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20
uotient is 1/1.2, so the sum is —

t term is 
20 and the q

1-1/1.2 
- 120. (c) 

1-2/5 
- 5

firs

(b) (1/20)- 
2 - 400 and the quotient is 1/20, so the sum is 

1 - 1/20 
— - 8000/19.

(Ite

f 
(a/r)(l — e-rT) (b)a/r, the same as (11.5.4).

5849.29

5000(1.04)

21232.32

5990.49

ormula (11.6.2), the annual payment is: 500000 • —1) 71 188.80.

0 . 71 188.80 = 711 888. (b) If the person has to pay twice a year, the biannual payment

total 
amount is 

1

1) 35 180.50. The total amount is then 20 • 35 180.50 = 703 610.80.

500000 
• 

-

= 21 472.26.(1.08)-10I 

12. (a) The 
present 

value is 
(3200/0.08)11 -

. - 5 1= 18978.13.-108 

(b) The 
present 

value is 7000 +

(1.08)-10I = 26 840.33. The present value when Lucy

(c) Four years ahead 

is 26 

the 

840.33 

present 

• 1.08

value 

= 

is 

19 728.44. So she 

-

should choose option (a).

-25forr=O.05. 1/0=5 forr=O.04.

10

(1 + 0.40 dt = (t +0.2?) = 30. 

14. 
(a)Thet0ta1revenueis 

- F(O) =

_2t+4 (c) Xt = 4 — 2

(—0.1)t 
(b) Xt =

1
15.

= 0. (d) x = Ae-3t1/(Ae
-3t —4) and x 

11. (a) x 1/(C- F) andx(t) —O. Ce-3t/2-5 -10

ce-t/2 (f) x = ce—3t + lt2 —

ax — b/a (b) V(x*) = 0 yields x* = (l/a) In(l + aV0/b).

18, (a) V(x) = (Vo + b/a)e-

— b/a yields Vm = — 1).

(b) See Example 10.5.3.

(e) x = Ae-2t + 5/3

1)b/a)e 0.001-1200 _ 1) = 8000(e1.2 _ 

= (1/0.001) In(l + 0.001 • 12000/8) 916, and vm =

18 561.

Chapter 12

12.1

1, (a)2x2 (b)2x3 (c)mxn

100

001
(3. u = 3 = -2. (Equating the elements in row 1 and column 3 gives u = 3.

Then, equating those in row 2 and column 3 gives u — v 5 and so v

The Other elements then need to be checked, but this is obvious.)
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12.2

1. Equations (a), (c), (d), and (f) are linear in x, y, z, and w, whereas (b) and (e) are nonlinear in these variables.

2. Yes: with h, h, andh all constants, the system is linear in a, b, c, and d.

3. 
+4x2+6x3+8x4=2, 5x1 +7x2+9x3+ 11x4 = 4, and 4x1 +6x2+8x3 lox

X2+X3 +X4 = bl

+ + x4 = b2

4. The system is
Xl + X2 + = 193

Xl X2 + X3

with solution
x3 = —tb3 + + b2 + b4)

(Adding the 4 equations, then dividing by 3, gives + h + + x4 = j (bi + b2 + 193 + b4).

Subtracting each of the original equations in turn from this new equation gives the solution for x

An alternative solution method is to eliminate the variables systematically, starting with (say) x4.)

5. (a) The commodity bundleownedby individual j. 

(c) 

(b)an 

may 

+ 

+ 

an + • 

+ 

' 
• 
+ 

• 

ain 

+ Pmamj

is the total amount ofcommodity iowned

by all individuals. The first case is when i =

— 0.712Y + c = 95.05

x- Y-S+ 0.00

6. After dropping terms with zero coeffcients, the equations are
0.158X

x

The solution is X = 93.53, Y 482.11, S 49.73, and C 438.31.

12.3

10 03
75 69

4 —6
, and 5A-- 3B =

-3

102 4 16 -2

- s + = 34.30

= 93.53

12.4

5 -1
3

13
and

10

1, 6, a-2b+ = (-3, 10, 2), 3a+2b - 3c

8 -20
12 8

—4

13

3. By definition of vector addition and scalar multiplication, the left-hand side of the equation is the vector 3(x,y,z) +

(3x — 5, 3y + 10, 3z + 15). For this to equal the vector (4, I, 3), all three components must be equal.

So the vector equation is equivalent to the equation system 3x — 5 = 4, 3y + 10 = 1, and 3z+ 15 = 3, with the

obvious solution x — 3 y

4. Here x = 0, so for all i, the ith component satisfies Xi = 0.

5. Nothing, because 0 x = 0 for all x.

6. We need to find numbers t ands such that t(2, —1) + s(1,4) = (4, —11). This vector equation is equivalent to (2t+

= (4, —11). Equating the two components gives the system (i) 2t + s = 4; (ii) —t + 4s = —11.

This system has the solution t = 3 , s =-2, so (4, -11)
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b g, so 68 + 8b, and x = 38 + 4b.

2, and B • (a + b) = 7. We see that a • a. (a-Jr b).

of the two vectors is x2 + (x — + 3 • 3x = x2 + xl — x + 9x + 8x = + 4),

O and for X

(b)u— 
526

's revenue is p • z. Its costs are p x. (b) Profit = revenue costs.

p • (z —x) = p • y. If p •y < 0, then the fitm makes a loss equal to —p Y.
equals 

p
2

Tbis 0 (b) Output vector = (c) Cost = (i, 3) = 3 (d) Revenue = (t, 3)

ut 
vector 1

2
2 3 = —1. (f) Loss = cost revenue = 3 2 = i, so profit—1

Oueofnetoutput= 
(1, 3)

(26 and 
-22)

o. + (-2).1 -2 -10 12 6
and BX =3. +1-1 3-4+1-5 15 3

14 6 -12
35 12 4 (c) AB is not defined, whereas BA =

3 3 -22

000
0 4 —6 andBA= (16), al x 1 matrix.

-1 15 (iii) From (ii) it follows that C(XB) =

(i)3A+2B-2C+D= -6 -13
533

AB = 19 -5 16

23 8 25

193 -3 (AB)C = A(BC) = 92 -28 76
—4

2 1
12

11 Xi 3

35 5 23-
02

. The matrix C must be 2 x 2.

13 2C22
21

C i2 we need + 3C21 C i2+ 3C22

1 3 C21 C22cm c22 — 1/2, and c22

The last matrix equation has the unique solution 
—

oo
, so first row of any product matrix 

mustbe (0,0).

30
So no matrix D can possibly satisfy (B — 21)D = I.
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uct AB is defined 
only if B has n rows.

6. The prod

matrix.

w —Y Y , forarbitrary 
y, w

Y 0.25
0.2875

0.2250

8. T(Ts) —

12.6

1 

2. 

31 

The 1 

It is 

0.85 0.10 0.10

0.05 0.55 0.05 
0.35

0.10 0.35 0.85

0.4875

4 14 6

1 matrix + 

shot 

+ + 2dxy + + 2fyz)

to 
that (ADC and A(BC) are both equal to the 2 x 2 matrix D = (dij)2x2, whose four

elements are 
ailb11C1j + anb12C2j + 

+ 
for i

4. (a) 209 (b)

5. (a) 
Silly 

that (A 
- 

+ -B) 

(ii) 
(A 

-B) 

- AB + -B 2 + —B2 unless AB = BA.

AB - BA + B2 + A2 — 2AB + unless AB = BA.

(b) Equality occurs in both (i) and (ii) if and only if AB BA.

6. (a) Verify directly by matrix multiplication. (b) AA = (AB)A = A(BA) = AB = A, so Aisidempotent.

Then just interchange A and B to show that B is idempotent.

(c) As the induction hypothesis, suppose that A, which is true for k = 1.

Then A

completes the proof by induction.

k+l AkA AA = A, which 

7. IfP3 Q = p2 (P3 Q) = P2 (PQ) p3 Q = PO.

d = ad — bc = 0 with
, it is enough to have a + 

8. (a)Verify directly by matrix multiplication. (b) Given A =

(c) see SM.

a, b, c, d not all 0. One example is A

12.7
1

5

-1

02 31
22

4 10
(AB)' =

8
= WA', andA'B' =

10 1410 

Verifying the rules for transposition specified in Eqs 

4 10

= -4 -10 — 10 8

is now very easy.

3. Direct verification shows that for each of the two matrices the element in position ij equals the element in positior

for i = 1, 2, 3 andj = 1, 2, 3.
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symfilet} e first equation.

J, v.sfies

example: 0 1
For

, (Al (A2A3))' = (A2A3)'A'l = (A'3A'2)A; 
To prove the general case, use induction.multiplication. (b)

O p2+q2

Q'Q - 
In, then = 

ln.p3 +112q 2p2q + 2pq2
pq2+q3

p2q+pq+pq2

2 - + {S. To derive the formula for T3, multiply each side ofthe last equation on the left by T.
(b) The 

appropriate formula is = 21-'IT+ (1 - 21-'I)S.

J, (a) The 
= 5, h = -2 can be found by using Gaussian elimination to obtain

/1 1 31

(3 5 51 —J

(b) Gaussian elimination yields

-1 -2
15

10 1 14/3

O -1/3

11 3 113
—4 1/2 5

-1 01 -2

1214
1

0-3 0 1 -1/3 0
0

1 0 1 14/3

01 0 -1/3

4

1 0 -1/3 1 -2

1 0 0 20/9
01 0 -1/3o o -3 -22/3 -1/3 00122/9 -1

The solution is therefore : Xl = = 22/9.

00122/9

(c) The general solution is Xl = (2/5)s, = (3/5)s, x3 = s, where s is an arbitrary real number.

Using Gaussian elimination to eliminate x from the second and third equations, and then y from the third equation, we
11

arrive at the augmented matrix 0 1 -3/2 -1/2

O O a+5/2 b-1/2

;oranyz, the first two equations imply that y = —i + and x = 1 —y + Z = ¯ äZ•

rom the last equation we see that for a # —i, there is a unique solution with z = (b — + i).

= —i, there are no solutions if b # 4, but there is one degree of freedom if b = (with z arbitrary).

I and forc = —2/5 the solution is x = 2c2 — 1 + t, y = s, z = t, w = 1 — c2 — 2s — 2t, for arbitrary s and t.

'Other values of c there are no solutions.

the first row down to row number three and use Gaussian elimination. There is a unique solution if and only if

ab3, there is no solution. Ifbl = åb3, there is an infinite set ofsolutions that take the formx = -24 +b3 - st,

ib2 
with t e R.
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12.9

1. a+b= (3, 3) and = (-15,0.5). see Fig. A12.9.1.

2. (—1, 2) = b; (ii)X = 1/4 gives x = (0, 7/4); 1/2 gives x = (1, 3/2);

(iv)i = 3/4 gives x = (2, 5/4); (v) X = 1 gives x = (3, I) = A. See Fig. A12.9.2.

(b) through [0, 11, the vectorxtraces out the line segment joining b to a in Fig. A12.9.2. (c)

x = 1/2

1
1 b

(-2.5, 0.5) x a

1 a
-1 1 2

Figure A12.9.2
Figure A12.9.1

3. see Fig. A12.9.3.

z

Il

P R
x

Figure A12.9.3

4. (a) A straight line through (0, 2, 3) parallel to the x-axis.

(b) A plane parallel to the z-axis whose intersection with the xy-plane is the line y = x.

5. llall = 3, llbll = 3, llcll = VS. Also, la • bl = 6 llall • llbll = 9.

6. (a) Xl(l, 2, 1) + 0, —2) = (Xl — 3x2, 2x1,x1 — 2x2) = (5, 4, 4) when Xl = 2 and h = —1,

(b) Xl andX2 would have to satisfy Xl (1, 2, 1) + 0, —2) = 6, 1). Thenxl -3x2 = -3, 

2x2 = 1. The first two equations imply that Xl = 3 and h = 2, which violate the last equation.

7. The pairs of vectors in (a) and (c) are orthogonal; the pair in (b) is not.

8. The vectors are orthogonal if and only if their inner product is 0. This is true if and only if

x2 — x — 8 — 2x + x = x2 — 2x — 8 = 0, which is the case for x = —2 and x = 4.

3/4

3

= 6, andXl —



and and cj are two different columns of P, then c'iCj is the element in row i and column j of
9' rp4, 'rx O.

so g
118112 + 211all • llbll + 11b112, whereas lla + b112

(11/11 + llbll)2
2— + b112 = 2(llall • llbll • b) 0 by the 

= (a 

Cauchy-SchwaQ 

+ b). 

inequality 
(129.7).

llb11 2.
(11811 + llbll)

Then

-3t+10(1 t) —
t) 2 4t, andX3 2t+ (l3 t, and % = 2 + t

(b) Xl

L 
(b) The 

l),
ßtheequation of Pis — 2) + 2(x2 — (—1)) + 1 (h — 3) 0, or—xl + 2x2 +x3 = -I.(c) we must have 2) + 5(2t — 1) — (t + 3) = 6, and so t = 4/3. Thus p (2/3, 5/3, 13/3).

4, 
2r+3y+5z S m, with m 75.

5, (a)Thiscanbeve1ified directly. (b) 

Review exercises for Chapter 12

1

345 —1

3 -2
2

222
(f) DC is not defined. 023

(C'A')B' = C'(A'B') —

111 13 1324
(b) 1480

201 -1
1

4

—10 9 15

-33 1 20
12 6 -15 (AB)C = A(BC) =

= (—2, 1, —l) 1 2 3)

(c) AB =

(g) 2A — 3B — 7 —6

5

(k) D'IY is not defined.

x

z

—5

6

15

a

b 3
(c) a

1 —2 3d

13 2 -1
5

—25 74 -25

74 -31 -48
6 25 38

-2 -75 -26

(d) C(AB) =

3 -2
-2 2

4 10 13
5 13 17

5

z 1

two matrix products on the left-hand side of the equation are
a b

2r x and 2a+x 2b
Equating

ir difference 21

x—2a x —2b
to the matrix the right-hand side yields the following four equalities:on 

2, a I, x 2a = 4, and x — 2b = 4. It follows that a b l, x = 6.
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a2 —b2 2ab b2

—2ab a2 —2b2 2ab

b2 —2ab a2 —b2

(b) (CBC)' = C'B'(C')' = C'(—B)C = —CBC. So A is skew-symmetric if and only if a 0.

(c) = HA' + A") = } (A' + A) = Al , so Al is symmetric. It is equally easy to prove that A2 is
as well as that any square matrix A is therefore the sum Al + A2 of a symmetric matrix Al and a Skew-symmetfic

141 105
l)228 -6 6) -1/6 1

The solution is 5, = —1. (b) The solution is Xl = 3/7, = — -18/7.

(c) The solution is Xl = —(19/14)x3, where x3 is arbitrary. (One degree of freedom.)

8. We use the method of Gaussian elimination:

1 a 20 2 2 0
—2 —a 14 I 5 4

2a 3a2 9 4 0 a2 9 — 4a 0 9 — 9a 4 — 4a

Fora = 1, the last equation is superfluous; the solution is x = 3t — 4, y = —5t + 4, z = t, with t arbitrary. If a 1,we have (9 — 9a)z = 4 — 4a, so z = 4/9. The two other equations then become x + ay = —8/9 and ay 16/9. Ifa = 0, there is no solution. If a # 0, the solution is x = —8/3, y = 16/9a, and z = 4/9.

9. Here llall = MGS, llbll = on, and llcll = S/65.Moreover la • bl = • 1 +5 • 1 +3 • (—3)l
llall llbll = = is obviously greater than la • bl = 5, so the Cauchy—Schwarz inequality 

= 1-51=5.Then
is satisfied.

10. Because PQ = QP + P, multiplying on the left by P gives P2Q = (PQ)P + p2 = (QP + + P2 = QP2 +
See SM for details of how to repeat this argument in order to prove by induction the result for higher powers

Chapter 13

13.1

— 1 
(e) 3t2t - 1 -3 t- 1 2t = 3t- 1 2t- l (3 - 2) = 6t- l

2. See Fig. A13.1.2. The shaded parallelogram has area 3 6 30

26

Figure A13.1.2

(d) (a+b) 2 —(a — = 4ab


