850 SOLUTIONS TO THE EXERCISES

6. (a) $x=50-\frac{1}{2} y$ (b) $x=\sqrt[5]{y / 2}$ (c) $x=\frac{1}{3}[2+\ln (y / 5)]$, defined for $y>0$
7. (a) $y=\ln \left(2+e^{x-3}\right)$, defined for $x \in \mathbb{R}$ (b) $y=-\frac{1}{\lambda} \ln a-\frac{1}{\lambda} \ln \left(\frac{1}{x}-1\right)$, defined for $x \in(0,1)$
8. (a) $\sqrt{13}$ (b) $\sqrt{17}$ (c) $\sqrt{(2-3 a)^{2}}=|2-3 a|$. (Note that $2-3 a$ is the correct answer only if $2-3 a \geq 0$, i.e.
$a \leq 2 / 3$. Check this by putting $a=3$.)
9. $(x-2)^{2}+(y+3)^{2}=25 \quad$ (b) $(x+2)^{2}+(y-2)^{2}=65$
10. $(x-3)^{2}+(y-2)^{2}=(x-5)^{2}+(y+4)^{2}$, which reduces to $x-3 y=7$. See Fig. A5.R.10.

Figure A5.R. 10
11. The function cannot be one-to-one, because at least two persons out of any five must have the same blood group.

Chapter 6

6.1

1. $f(3)=2$. The tangent passes through $(0,3)$, so has slope $-1 / 3$. Thus, $f^{\prime}(3)=-1 / 3$.
2. $g(5)=1, g^{\prime}(5)=1$.

6.2

1. $f(5+h)-f(5)=4(5+h)^{2}-4 \cdot 5^{2}=4\left(25+10 h+h^{2}\right)-100=40 h+4 h^{2}$. So $[f(5+h)-f(5)] / h=40+$ $4 h \rightarrow 40$ as $h \rightarrow 0$. Hence, $f^{\prime}(5)=40$. This accords with (6) when $a=4$ and $b=c=0$.
2. (a) $f^{\prime}(x)=6 x+2$ (b) $f^{\prime}(0)=2, f^{\prime}(-2)=-10, f^{\prime}(3)=20$. The tangent equation is $y=2 x-1$.
3. $\mathrm{d} D(P) / \mathrm{d} P=-b$
4. $C^{\prime}(x)=2 q x$
5. $\frac{f(x+h)-f(x)}{h}=\frac{1 /(x+h)-1 / x}{h}=\frac{x-(x+h)}{h x(x+h)}=\frac{-h}{h x(x+h)}=-\frac{1}{x(x+h)} \underset{h \rightarrow 0}{\longrightarrow}-\frac{1}{x^{2}}$
6. (a) $f^{\prime}(0)=3$
(b) $f^{\prime}(1)=2$
(c) $f^{\prime}(3)=-1 / 3$
(d) $f^{\prime}(0)=-2$
(e) $f^{\prime}(-1)=0 \quad$ (f) $f^{\prime}(1)=4$
7. (a) $f(x+h)-f(x)=a(x+h)^{2}+b(x+h)+c-\left(a x^{2}+b x+c\right)=2 a h x+b h+a h^{2}$,
so $[f(x+h)-f(x)] / h=2 a x+b+a h \rightarrow 2 a x+b$ as $h \rightarrow 0$. Thus $f^{\prime}(x)=2 a x+b$.
(b) $f^{\prime}(x)=0$ for $x=-b / 2 a$. The tangent is parallel to the x-axis at the minimum/maximum point.
.f $f^{(b)}<0, f^{\prime}(b)=0, f^{\prime}(c)>0, f^{\prime}(d)<0$
(a) Exp and the left-hand side. (b) Rearrange the identity in (a).
(c) letting $h \rightarrow 0$, the formula follows. (Recall that $\sqrt{x}=x^{1 / 2}$ and $1 / \sqrt{x}=x^{-1 / 2}$.)
$f^{\prime}(x)=3 a x^{2}+2 b x+c$. (b) Put $a=1$ and $b=c=d=0$ to get the result in Example 6.2.2. Then put $a=0$

$$
\frac{(x+h)^{1 / 3}-x^{1 / 3}}{h}=\frac{1}{(x+h)^{2 / 3}+(x+h)^{1 / 3} x^{1 / 3}+x^{2 / 3}} \rightarrow \frac{1}{3 x^{2 / 3}} \text { as } h \rightarrow 0 \text {, and } \frac{1}{3 x^{2 / 3}}=\frac{1}{3} x^{-2 / 3}
$$

6.3

1. $f^{\prime}(x)=2 x-4$, so $f(x)$ is decreasing in $(-\infty, 2]$, increasing in $[2, \infty)$.
. $f(x)=-3 x^{2}+8 x-1=-3\left(x-x_{0}\right)\left(x-x_{1}\right)$, where $x_{0}=\frac{1}{3}(4-\sqrt{13}) \approx 0.13$ and $x_{1}=\frac{1}{3}(4+\sqrt{13}) \approx 2.54$.
Thenf $f(x)$ is decreasing in $\left(-\infty, x_{0}\right]$, increasing in $\left[x_{0}, x_{1}\right]$, and decreasing in $\left[x_{1}, \infty\right)$.
2. The expression in the bracket is a sum of two squares, so it is never negative and it is 0 only if both $x_{1}+\frac{1}{2} x_{2}$ and x_{2} are equal to 0 . This happens only when $x_{1}=x_{2}=0$. Thus the bracket is always positive if $x_{1} \neq x_{2}$, and then $x_{2}^{3}-x_{1}^{3}$ will have the same sign as $x_{2}-x_{1}$. It follows that f is strictly increasing.
6.4
3. $C^{\prime}(100)=203$ and $C^{\prime}(x)=2 x+3$.
4. Here c is the marginal cost, and also the (constant) incremental cost of producing each additional unit, whereas \bar{C} is the fixed cost.
5. (a) $S^{\prime}(Y)=s \quad$ (b) $S^{\prime}(Y)=0.1+0.0004 Y$
6. $T^{\prime}(v)=t$, so the marginal tax rate is constant.
7. The interpretation of $x^{\prime}(0)=-3$ is that at time $t=0$, the rate of extraction is 3 barrels per minute.
8. (a) $C^{\prime}(x)=3 x^{2}-180 x+7500$ (b) By (4.6.3), the quadratic function $C^{\prime}(x)$ has a minimum at $x=180 / 6=30$.
9. (a) $\pi^{\prime}(Q)=24-2 Q$, and $Q^{*}=12$.
(b) $R^{\prime}(Q)=500-Q^{2}$
(c) $C^{\prime}(Q)=-3 Q^{2}+428.4 Q-7900$
10. (a) $C^{\prime}(x)=2 a_{1} x+b_{1}$
(b) $C^{\prime}(x)=3 a_{1} x^{2}$

6.5

1. (a) 3
(b) $-1 / 2$
(c) $13^{3}=2197$
(d) 40
(e) 1 (f) $-3 / 4$
2. (a) 0.6931 (b) 1.0986 (c) 0.4055 (Actually, using the result in Example 7.12.2, the precise values of these three limits are $\ln 2, \ln 3$, and $\ln (3 / 2)$, respectively.)
3. (a) We have the following table (where $*$ denotes undefined):

x	0.9	0.99	0.999	1	1.001	1.01	1.1
$\frac{x^{2}+7 x-8}{x-1}$	8.9	8.99	8.999	$*$	9.001	9.01	9.1

(b) $x^{2}+7 x-8=(x-1)(x+8)$, so $\left(x^{2}+7 x-8\right) /(x-1)=x+8 \rightarrow 9$ as $x \rightarrow 1$.
4. (a) 5
(b) $1 / 5$
(c) 1
(d) -2
(e) $3 x^{2}$
(f) h^{2}
5. $\begin{array}{ll}\text { (a) } 1 / 6 & \text { (b) }-\infty \text { (the limit does not exist). }\end{array}$
(c) 2
$\begin{array}{ll}\text { (d) } \sqrt{3} / 6 & \text { (e) }-2 / 3\end{array}$
(f) $1 / 4$
6. (a) 4
(b) 5
(c) 6
(d) $2 a+2$
(e) $2 a+2$
(f) $4 a+4$
7. (a) $x^{3}-8=(x-2)\left(x^{2}+2 x+4\right)$, so the limit is $1 / 6$.
(b) $\lim _{h \rightarrow 0}[\sqrt[3]{27+h}-3] / h=\lim _{u \rightarrow 3}(u-3) /\left(u^{3}-27\right)$, and $u^{3}-27=(u-3)\left(u^{2}+3 u+9\right)$, so the limit is $\lim _{u \rightarrow 3} 1 /\left(u^{2}+3 u+9\right)=1 / 27$.
(c) $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)$, so the limit is n.

6.6

1. (a) 0 (b) $4 x^{3}$ (c) $90 x^{9}$ (d) 0 (Remember that π is a constant!)
2. (a) $2 g^{\prime}(x)$
(b) $-\frac{1}{6} g^{\prime}(x)$
(c) $\frac{1}{3} g^{\prime}(x)$
3. (a) $6 x^{5}$
(c) $50 x^{49}$
(d) $28 x^{-8}$
(e) x^{11}
(f) $4 x^{-3}$
(g) $-x^{-4 / 3}$
(h) $3 x^{-5 / 2}$
4. (a) $8 \pi r$
(b) $A(b+1) y^{b}$
(c) $(-5 / 2) A^{-7 / 2}$
5. In (6.2.1) (the definition of the derivative), choose $h=x-a$ so that $a+h$ is replaced by x, and $h \rightarrow 0$ implies $x \rightarrow a$. For $f(x)=x^{2}$ we get $f^{\prime}(a)=2 a$.
6. (a) $F(x)=\frac{1}{3} x^{3}+C$
(b) $F(x)=x^{2}+3 x+C$
(c) $F(x)=x^{a+1} /(a+1)+C$. (In all cases C is an arbitrary constant.)
7. (a) With $f(x)=x^{2}$ and $a=5$, one has $\lim _{h \rightarrow 0} \frac{(5+h)^{2}-5^{2}}{h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)=f^{\prime}(5)$.

On the other hand, $f^{\prime}(x)=2 x$, so $f^{\prime}(5)=10$, and the limit is 10 .
(b) Let $f(x)=x^{5}$. Then $f^{\prime}(x)=5 x^{4}$, and the limit is equal to $f^{\prime}(1)=5 \cdot 1^{4}=5$.
(c) Let $f(x)=5 x^{2}+10$. Then $f^{\prime}(x)=10 x$, and this is the value of the limit.

6.7

1. (a) 1
(b) $1+2 x$
(c) $15 x^{4}+8 x^{3}$
(d) $32 x^{3}+x^{-1 / 2}$
(e) $\frac{1}{2}-3 x+15 x^{2}$
(f) $-21 x^{6}$
2. (a) $\frac{6}{5} x-14 x^{6}-\frac{1}{2} x^{-1 / 2}$
(b) $4 x\left(3 x^{4}-x^{2}-1\right)$
(c) $10 x^{9}+5 x^{4}+4 x^{3}-x^{-2}$. (In (b) and (c), first expand and then differentiate.)
3. (a) $-6 x^{-7}$
(b) $\frac{3}{2} x^{1 / 2}-\frac{1}{2} x^{-3 / 2} \quad$ (c) $-\frac{3}{2} x^{-5 / 2}$
(d) $-2 /(x-1)^{2}$
(e) $-4 x^{-5}-5 x^{-6}$
(f) $34 /(2 x+8)^{2}$
(g) $-33 x^{-12}$
(h) $\left(-3 x^{2}+2 x+4\right) /\left(x^{2}+x+1\right)^{2}$
4. (a) $\frac{3}{2 \sqrt{x}(\sqrt{x}+1)^{2}} \quad$ (b) $\frac{4 x}{\left(x^{2}+1\right)^{2}} \quad$ (c) $\frac{-2 x^{2}+2}{\left(x^{2}-x+1\right)^{2}}$
5. (a) $f^{\prime}\left(L^{*}\right)<f\left(L^{*}\right) / L^{*}$. See Fig. A6.7.5. The tangent at P has the slope $f^{\prime}\left(L^{*}\right)$. We "see" that the tangent at P is less steep than the straight line from the origin to P, which has the slope $f\left(L^{*}\right) / L^{*}=g\left(L^{*}\right)$. (The inequality follows directly from the characterization of differentiable concave functions in Eq. (8.4.3).)
(b) $\frac{\mathrm{d}}{\mathrm{d} L}\left(\frac{f(L)}{L}\right)=\frac{1}{L}\left[f^{\prime}(L)-\frac{f(L)}{L}\right]$, as in Example 6.7.7.
6. (a) $[2, \infty)$
(b) $[-\sqrt{3}, 0]$ and $[\sqrt{3}, \infty)$
(c) $[-\sqrt{2}, \sqrt{2}]$
(d) $\left(-\infty, \frac{1}{2}(-1-\sqrt{5})\right]$ and $\left[0, \frac{1}{2}(-1+\sqrt{5})\right]$.
7. (a) $y=-3 x+4$
(b) $y=x-1$
(c) $y=(17 x-19) / 4$
(d) $y=-(x-3) / 9$
8. $\dot{R}(t)=\dot{p}(t) x(t)+p(t) \dot{x}(t)$. Here, $R(t)$ increases for two reasons. First, $R(t)$ increases because of the price increase. This increase is proportional to the amount of extraction $x(t)$ and is equal to $\dot{p}(t) x(t)$. But $R(t)$ also rises because

Figure A6.7.5
9. (a) $(a d-b c) /(c t+d)^{2} \quad$ (b) $a\left(n+\frac{1}{2}\right) t^{n-1 / 2}+n b t^{n-1} \quad$ (c) $-(2 a t+b) /\left(a t^{2}+b t+c\right)^{2}$
10. The product rule yields $f^{\prime}(x) \cdot f(x)+f(x) \cdot f^{\prime}(x)=1$, so $2 f^{\prime}(x) \cdot f(x)=1$. Hence, $f^{\prime}(x)=1 / 2 f(x)=1 / 2 \sqrt{x}$.

1. If $f(x)=1 / x^{n}$, the quotient rule yields $f^{\prime}(x)=\left(0 \cdot x^{n}-1 \cdot n x^{n-1}\right) /\left(x^{n}\right)^{2}=-n x^{-n-1}$, which is the power rule.

6.8

1. (a) $\mathrm{d} y / \mathrm{d} x=(\mathrm{d} y / \mathrm{d} u)(\mathrm{d} u / \mathrm{d} x)=20 u^{4-1} \mathrm{~d} u / \mathrm{d} x=20\left(1+x^{2}\right)^{3} 2 x=40 x\left(1+x^{2}\right)^{3}$
(b) $\mathrm{d} / \mathrm{d} x=\left(1-6 u^{5}\right)(\mathrm{d} u / \mathrm{d} x)=\left(-1 / x^{2}\right)\left(1-6(1+1 / x)^{5}\right)$
2. (a) $\mathrm{d} Y / \mathrm{d} t=(\mathrm{d} Y / \mathrm{d} V)(\mathrm{d} V / \mathrm{d} t)=(-3) 5(V+1)^{4} t^{2}=-15 t^{2}\left(t^{3} / 3+1\right)^{4}$
(b) $\mathrm{d} / \mathrm{d} t=(\mathrm{d} K / d L)(\mathrm{d} L / d t)=A a L^{a-1} b=A a b(b t+c)^{a-1}$
3. (a) $y^{\prime}=-5\left(x^{2}+x+1\right)^{-6}(2 x+1) \quad$ (b) $y^{\prime}=\frac{1}{2}\left[x+\left(x+x^{1 / 2}\right)^{1 / 2}\right]^{-1 / 2}\left(1+\frac{1}{2}\left(x+x^{1 / 2}\right)^{-1 / 2}\left(1+\frac{1}{2} x^{-1 / 2}\right)\right)$
(c) $y^{\prime}=a x^{a-1}(p x+q)^{b}+x^{a} b p(p x+q)^{b-1}=x^{a-1}(p x+q)^{b-1}[(a+b) p x+a q]$
4. $\left(\mathrm{d} Y / \mathrm{d} t_{t=t_{0}}=(\mathrm{d} Y / \mathrm{d} K)_{t=t_{0}} \cdot(\mathrm{~d} K / \mathrm{d} t)_{t=t_{0}}=Y^{\prime}\left(K\left(t_{0}\right)\right) K^{\prime}\left(t_{0}\right)\right.$
5. $\mathrm{d} Y / d t=F^{\prime}(h(t)) \cdot h^{\prime}(t)$
6. $x=b-\sqrt{a p-c}=b-\sqrt{u}$, with $u=a p-c$. Then $\frac{\mathrm{d} x}{\mathrm{~d} p}=-\frac{1}{2 \sqrt{u}} u^{\prime}=-\frac{a}{2 \sqrt{a p-c}}$.
7. (i) $h^{\prime}(x)=f^{\prime}\left(x^{2}\right) 2 x$ (ii) $h^{\prime}(x)=f^{\prime}\left(x^{n} g(x)\right)\left(n x^{n-1} g(x)+x^{n} g^{\prime}(x)\right)$
8. $b(t)$ is the total fuel consumption after t hours. Then $b^{\prime}(t)=B^{\prime}(s(t)) s^{\prime}(t)$, so the rate of fuel consumption per hour is equal to the rate per kilometre multiplied by the speed in kph .
9. $\mathrm{dC} / \mathrm{d} x=q\left(25-\frac{1}{2} x\right)^{-1 / 2}$
10. (a) $y^{\prime}=5\left(x^{4}\right)^{4} \cdot 4 x^{3}=20 x^{19}$
(b) $y^{\prime}=3(1-x)^{2}(-1)=-3+6 x-3 x^{2}$
11. (a) (i) $g(5)$ is the amount accumulated if the interest rate is 5% per year, which is approximately $€ 1629$.
(ii) $g^{\prime}(5)$ is the increase in this value per unit increase in the interest rate, which is approximately $€ 155$.
(b) $g(p)=1000(1+p / 100)^{10}$, so $g(5)=1000 \cdot 1.05^{10}=1628.89$ to the nearest eurocent.

Moreover, $g^{\prime}(p)=1000 \cdot 10(1+p / 100)^{9} \cdot 1 / 100$, so $g^{\prime}(5)=100 \cdot 1.05^{9}=155.13$ to the nearest eurocent.
12. (a) $1+f^{\prime}(x)$
(b) $2 f(x) f^{\prime}(x)-1$
(c) $4[f(x)]^{3} f^{\prime}(x)$
$\begin{array}{llll}\left.\text { (f) } f^{\prime}(x)\right) /[2 \sqrt{f(x)}] & \text { (g) } 2 x f(x)+x^{2} f^{\prime}(x)+3[f(x)]^{2} f^{\prime}(x) & \left.\text { (e) } f(x)+x x^{2}(x)-x^{2}(x)\right] /[f(x)]^{2} & \text { (h) }\left[2 x f(x) f^{\prime}(x)-3(f(x))^{2}\right] / x^{4}\end{array}$
13. (a) Provided that $x \neq 0$ and $0<|h|<|x|$, one has $\frac{1}{h}[\varphi(x+h)-\varphi(x)]=\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right)=\frac{-h}{h(x+h) x}=$
$\frac{-1}{(x+h) x}$, which tends to $-1 / x^{2}$ as $h \rightarrow 0$. In particular, $\varphi(x)=1 / x$ is differentiable if $x \neq 0$.
(b) For any x with $g(x) \neq 0$, if f and g are differentiable at x, then:
(i) combining (a) with the chain rule implies that $1 / g(x)=\varphi(g(x))$ is differentiable at x;
(ii) the product rule implies that $f(x) / g(x)=f(x) \cdot[1 / g(x)]$ is differentiable at x.

6.9

1. (a) $y^{\prime \prime}=20 x^{3}-36 x^{2} \quad$ (b) $y^{\prime \prime}=(-1 / 4) x^{-3 / 2}$
(c) $y^{\prime}=20 x\left(1+x^{2}\right)^{9}$, and then $y^{\prime \prime}=20\left(1+x^{2}\right)^{9}+20 x \cdot 9 \cdot 2 x\left(1+x^{2}\right)^{8}=20\left(1+x^{2}\right)^{8}\left(1+19 x^{2}\right)$
2. $\mathrm{d}^{2} y / \mathrm{d} x^{2}=\left(1+x^{2}\right)^{-1 / 2}-x^{2}\left(1+x^{2}\right)^{-3 / 2}=\left(1+x^{2}\right)^{-3 / 2}$
3. (a) $y^{\prime \prime}=18 x$
(b) $Y^{\prime \prime \prime}=36$
(c) $\mathrm{d}^{3} z / \mathrm{d} t^{3}=-2$
(d) $f^{(4)}(1)=84000$
4. $g^{\prime}(t)=\frac{2 t(t-1)-t^{2}}{(t-1)^{2}}=\frac{t^{2}-2 t}{(t-1)^{2}}$, and $g^{\prime \prime}(t)=\frac{2}{(t-1)^{3}}$, so $g^{\prime \prime}(2)=2$.
5. With simplified notation: $y^{\prime}=f^{\prime} g+f g^{\prime}, y^{\prime \prime}=f^{\prime \prime} g+f^{\prime} g^{\prime}+f^{\prime} g^{\prime}+f g^{\prime \prime}=f^{\prime \prime} g+2 f^{\prime} g^{\prime}+f g^{\prime \prime}$, and $y^{\prime \prime \prime}=f^{\prime \prime \prime} g+f^{\prime \prime} g^{\prime}+2 f^{\prime \prime} g^{\prime}+2 f^{\prime} g^{\prime \prime}+f^{\prime} g^{\prime \prime}+f g^{\prime \prime \prime}=f^{\prime \prime \prime} g+3 f^{\prime \prime} g^{\prime}+3 f^{\prime} g^{\prime \prime}+f g^{\prime \prime \prime}$.
6. $L=(2 t-1)^{-1 / 2}$, so $\mathrm{d} L / \mathrm{d} t=-\frac{1}{2} \cdot 2(2 t-1)^{-3 / 2}=-(2 t-1)^{-3 / 2}$, and $\mathrm{d}^{2} L / \mathrm{d} t^{2}=3(2 t-1)^{-5 / 2}$.
7. (a) $R=0$
(b) $R=1 / 2$
(c) $R=3$
(d) $R=\rho$
8. Because $g(u)$ is not concave.
9. The Secretary of Defense: $P^{\prime}<0$. Representative Gray: $P^{\prime} \geq 0$ and $P^{\prime \prime}<0$.
10. $\mathrm{d}^{3} L / \mathrm{d} t^{3}>0$

6.10

1. (a) $y^{\prime}=e^{x}+2 x$
(b) $y^{\prime}=5 e^{x}-9 x^{2}$
(c) $y^{\prime}=\left(1 \cdot e^{x}-x e^{x}\right) / e^{2 x}=(1-x) e^{-x}$
(d) $y^{\prime}=\left[(1+2 x)\left(e^{x}+1\right)-\left(x+x^{2}\right) e^{x}\right] /\left(e^{x}+1\right)^{2}=\left[1+2 x+e^{x}\left(1+x-x^{2}\right)\right] /\left(e^{x}+1\right)^{2}$
(e) $y^{\prime}=-1-e^{x}$
(f) $y^{\prime}=x^{2} e^{x}(3+x)$
(g) $y^{\prime}=e^{x}(x-2) / x^{3}$
(h) $y^{\prime}=2\left(x+e^{x}\right)\left(1+e^{x}\right)$
2. (a) $d x / d t=(b+2 c t) e^{t}+\left(a+b t+c t^{2}\right) e^{t}=\left(a+b+(b+2 c) t+c t^{2}\right) e^{t}$
(b) $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{3 q t^{2} t e^{t}-\left(p+q t^{3}\right)(1+t) e^{t}}{t^{2} e^{2 t}}=\frac{-q t^{4}+2 q t^{3}-p t-p}{t^{2} e^{t}}$
(c) $\frac{\mathrm{d} x}{\mathrm{~d} t}=\left[2\left(a t+b t^{2}\right)(a+2 b t) e^{t}-\left(a t+b t^{2}\right)^{2} e^{t}\right] /\left(e^{t}\right)^{2}=\left[t(a+b t)\left(-b t^{2}+(4 b-a) t+2 a\right)\right] e^{-t}$
3. (a) $y^{\prime}=-3 e^{-3 x}$ and $y^{\prime \prime}=9 e^{-3 x} \quad$ (b) $y^{\prime}=6 x^{2} e^{x^{3}}$ and $y^{\prime \prime}=6 x e^{x^{3}}\left(3 x^{3}+2\right)$
(c) $y^{\prime}=-x^{-2} e^{1 / x}$ and $y^{\prime \prime}=x^{-4} e^{1 / x}(2 x+1)$
(d) $y^{\prime}=5(4 x-3) e^{2 x^{2}-3 x+1}$ and $y^{\prime \prime}=5 e^{2 x^{2}-3 x+1}\left(16 x^{2}-24 x+13\right)$

(b) $[0,1 / 2] \quad$ (c) $(-\infty,-1]$ and $[0,1]$

5. ${ }^{(a) y} y^{y}=2 x e^{-2 x(1-x)}$, so y is increasing in $[0,1]$. (b) $y^{\prime}=e^{x}$
(c) $\left.y^{2 x}+3\right) e^{2 x} /(x+2)^{2}$, so y is increasing in $[-3 / 2, \infty)$.
6. ${ }^{(3)}$ (a) $=$ (b) $^{y}=2^{x}+x 2^{x} \ln 2=2^{x}(1+x \ln 2)$
(d) $z^{2} e^{2^{3}}\left(e^{z^{3}}-1\right)^{-2 / 3}$
7. (a) $y=5^{x} y=e^{x} 10^{x}+e^{x} 10^{x} \ln 10=e^{x} 10^{x}(1+\ln 10)$
(d). $)$
8. ${ }^{11}$ 1. ${ }^{1}$ and $y^{\prime \prime}=-1 / x^{2}$
$\left.\begin{array}{ll}\text { (b) } y^{\prime}=1 / x+3 & \text { (b) } \\ \text { (a) }\end{array}\right)$ and $y^{\prime \prime}=2+2 / x^{2}$
(c) $y^{\prime}=3 x^{2} \ln x+x^{2}$ and $y^{\prime \prime}=x(6 \ln x+5) \quad$ (d) $y^{\prime}=(1-\ln x) / x^{2}$ and $y^{\prime \prime}=(2 \ln x-3) / x^{3}$
$\begin{array}{lll}\text { (f) }(2 x+3) /\left(x^{2}+3 x-1\right) & \text { (g) }-2 e^{x}\left(e^{x}-1\right)^{-2} & \text { (h) }(4 x-1) e^{2 x^{2}-x}\end{array}$
$\begin{array}{lll}\text { 4. (a) } x>-1 & \text { (b) } 1 / 3<x<1 & \text { (c) } x \neq 0\end{array}$
9. (a) $|x|>1$ (b) $x>1$ (c) $x \neq e^{e}$ and $x>1$
10. (a) y is defined only in $(-2,2)$, where $y^{\prime}=-8 x /\left(4-x^{2}\right)>0$ iff $x<0$. Thus, y is increasing in $(-2,0]$.
(b) y is defined for $x>0$, where $y^{\prime}=x^{2}(3 \ln x+1)>0$ iff $\ln x>-1 / 3$. Thus, y is increasing in $\left[e^{-1 / 3}, \infty\right)$.
(c) y is defined for $x>0$, where $y^{\prime}=(1-\ln x)(\ln x-3) / 2 x^{2}>0$ iff $1<\ln x<3$. Thus, y is increasing in $\left[e, e^{3}\right]$.
11. (a) (i) $y=x-1 \quad$ (ii) $y=2 x-1-\ln 2 \quad$ (iii) $y=x / e \quad$ (b) (i) $y=x \quad$ (ii) $y=2 e x-e \quad$ (iii) $y=-e^{-2} x-4 e^{-2}$
12. (a) $f^{\prime}(x) / f(x)=2 \ln x+2$
(b) $f^{\prime}(x) / f(x)=1 /(2 x-4)+2 x /\left(x^{2}+1\right)+4 x^{3} /\left(x^{4}+6\right)$
(c) $f^{\prime}(x) / f(x)=-2 /\left[3\left(x^{2}-1\right)\right]$
g. (a) $(2 x)^{x}(1+\ln 2+\ln x)$
(b) $x^{\sqrt{x}-\frac{1}{2}}\left(\frac{1}{2} \ln x+1\right)$
(c) $\frac{1}{2}(\sqrt{x})^{x}(\ln x+1)$
13. $\ln y=v \ln u$, so $y^{\prime} / y=v^{\prime} \ln u+v u^{\prime} / u$ and therefore $y^{\prime}=u^{v}\left(v^{\prime} \ln u+v u^{\prime} / u\right)$.
(Alternatively, note that $y=\left(e^{\ln u}\right)^{v}=e^{v \ln u}$, and then use the chain rule.)
14. (a) Let $f(x)=e^{x}-\left(1+x+\frac{1}{2} x^{2}\right)$. Then $f(0)=0$ and $f^{\prime}(x)=e^{x}-(1+x)>0$ for all $x>0$, as shown in the exercise. Hence $f(x)>0$ for all $x>0$, and the inequality follows.
(b) Consider the two functions $f_{1}(x)=\ln (1+x)-\frac{1}{2} x$ and $f_{2}(x)=x-\ln (1+x)$. For more details, see SM.
(c) Consider the function $g(x)=2(\sqrt{x}-1)-\ln x$. For more details, see SM.

Review exercises for Chapter 6

1. $[f(x+h)-f(x)] / h=\left[(x+h)^{2}-(x+h)+2-x^{2}+x-2\right] / h=\left[2 x h+h^{2}-h\right] / h=2 x+h-1$.

Therefore $[f(x+h)-f(x)] / h \rightarrow 2 x-1$ as $h \rightarrow 0$, so $f^{\prime}(x)=2 x-1$.
2. $[f(x+h)-f(x)] / h=-6 x^{2}+2 x-6 x h-2 h^{2}+h \rightarrow-6 x^{2}+2 x$ as $h \rightarrow 0$, so $f^{\prime}(x)=-6 x^{2}+2 x$.
3. $\begin{array}{lll}\text { (a) } y^{\prime}=2, y^{\prime \prime}=0 & \text { (b) } y^{\prime}=3 x^{8}, y^{\prime \prime}=24 x^{7} & \text { (c) } y^{\prime}=-x^{9}, y^{\prime \prime}=-9 x^{8}\end{array}$
$\begin{array}{lll}\text { (e) } y^{\prime}=1 / 10, y^{\prime \prime}=0 & \text { (f) } y^{\prime}=5 x^{4}+5 x^{-6}, y^{\prime \prime}=20 x^{3}-30 x^{-7} & \text { (g) } y^{\prime}=x^{3}+x^{2}, y^{\prime \prime}=3 x^{2}+2 x\end{array}$
(h) $y^{\prime}=-x^{-2}-3 x^{-4}, y^{\prime \prime}=2 x^{-3}+12 x^{-5}$
4. Because $C^{\prime}(1000) \approx C(1001)-C(1000)$, if $C^{\prime}(1000)=25$, the additional cost of producing 1000 units is approximately 25 per unit. If the price per unit is slightly above 1000 units is approximately $30-25=5$ per unit.
5. (a) $y=-3$ and $y^{\prime}=-6 x=-6$ at $x=1$, so $y-(-3)=(-6)(x-1)$, or $y=-6 x+3$.
(b) $y=-14$ and $y^{\prime}=1 / 2 \sqrt{x}-2 x=-31 / 4$ at $x=4$, so $y=-(31 / 4) x+17$.
(c) $y=0$ and $y^{\prime}=\left(-2 x^{3}-8 x^{2}+6 x\right) /(x+3)^{2}=-1 / 4$ at $x=1$, so $y=(-1 / 4)(x-1)$.
6. The additional cost of increasing the area by a small amount from $100 \mathrm{~m}^{2}$ is approximately $\$ 250$ per m^{2}.
7. (a) $f(x)=x^{3}+x$, so $f^{\prime}(x)=3 x^{2}+1$.
(b) $g^{\prime}(w)=-5 w^{-6} \quad$ (c) $h(y)=y\left(y^{2}-1\right)=y^{3}-y$, so $h^{\prime}(y)=3 y^{2}-1$.
(d) $G^{\prime}(t)=\left(-2 t^{2}-2 t+6\right) /\left(t^{2}+3\right)^{2}$
(e) $\varphi^{\prime}(\xi)=\left(4-2 \xi^{2}\right) /\left(\xi^{2}+2\right)^{2} \quad$ (f) $F^{\prime}(s)=-\left(s^{2}+2\right) /\left(s^{2}+s-2\right)^{2}$
8. (a) $2 a t \quad$ (b) $a^{2}-2 t$ (c) $2 \times \varphi-1 / 2 \sqrt{\varphi}$
9. (a) $y^{\prime}=20 u u^{\prime}=20\left(5-x^{2}\right)(-2 x)=40 x^{3}-200 x \quad$ (b) $y^{\prime}=\frac{1}{2 \sqrt{u}} \cdot u^{\prime}=\frac{-1}{2 x^{2} \sqrt{1 / x-1}}$
10. (a) $\mathrm{d} Z / \mathrm{d} t=(\mathrm{d} Z / \mathrm{d} u)(\mathrm{d} u / \mathrm{d} t)=3\left(u^{2}-1\right)^{2} 2 u 3 t^{2}=18 t^{5}\left(t^{6}-1\right)^{2}$
(b) $\mathrm{d} K / \mathrm{d} t=(\mathrm{d} K / \mathrm{d} L)(\mathrm{d} L / \mathrm{d} t)=(1 /[2 \sqrt{L}])\left(-1 / t^{2}\right)=-1 /\left[2 t^{2} \sqrt{1+1 / t}\right]$
11. (a) $\dot{x} / x=2 \dot{a} / a+\dot{b} / b \quad$ (b) $\dot{x} / x=\alpha \dot{a} / a+\beta \dot{b} / b \quad$ (c) $\dot{x} / x=(\alpha+\beta)\left(\alpha a^{\alpha-1} \dot{a}+\beta b^{\beta-1} \dot{b}\right) /\left(a^{\alpha}+b^{\beta}\right)$
12. $\mathrm{d} R / \mathrm{d} t=(\mathrm{d} R / \mathrm{d} S)(\mathrm{d} S / \mathrm{d} K)(\mathrm{d} K / \mathrm{d} t)=\alpha S^{\alpha-1} \beta \gamma K^{\gamma-1} A p t^{p-1}=A \alpha \beta \gamma p t^{p-1} S^{\alpha-1} K^{\gamma-1}$
13. (a) $h^{\prime}(L)=a p L^{a-1}\left(L^{a}+b\right)^{p-1}$
(b) $C^{\prime}(Q)=a+2 b Q$
(c) $P^{\prime}(x)=a x^{1 / q-1}\left(a x^{1 / q}+b\right)^{q-1}$
14. (a) $y^{\prime}=-7 e^{x}$
(b) $y^{\prime}=-6 x e^{-3 x^{2}}$
(c) $y^{\prime}=x e^{-x}(2-x)$
(d) $y^{\prime}=e^{x}\left[\ln \left(x^{2}+2\right)+2 x /\left(x^{2}+2\right)\right]$
(e) $y^{\prime}=15 x^{2} e^{5 x^{3}}$
(f) $y^{\prime}=x^{3} e^{-x}(x-4)$
(g) $y^{\prime}=10\left(e^{x}+2 x\right)\left(e^{x}+x^{2}\right)^{9}$
(h) $y^{\prime}=1 / 2 \sqrt{x}(\sqrt{x}+1)$
15. (a) $[1, \infty) \quad$ (b) $[0, \infty)$ (c) $(-\infty, 1]$ and $[2, \infty)$
16. (a) $\frac{\mathrm{d} \pi}{\mathrm{d} Q}=P(Q)+Q P^{\prime}(Q)-c$
(b) $\frac{\mathrm{d} \pi}{\mathrm{d} L}=P F^{\prime}(L)-w$

Chapter 7

7.1

1. Differentiating w.r.t. x yields $6 x+2 y^{\prime}=0$, so $y^{\prime}=-3 x$. Solving the given equation for y yields $y=5 / 2-3 x^{2} / 2$, implying that $y^{\prime}=-3 x$.
2. Implicit differentiation yields $(*) 2 x y+x^{2}(\mathrm{~d} y / \mathrm{d} x)=0$, and so $\mathrm{d} y / \mathrm{d} x=-2 y / x$. Differentiating $(*)$ implicitly w.rt. x gives $2 y+2 x(\mathrm{~d} y / \mathrm{d} x)+2 x(\mathrm{~d} y / \mathrm{d} x)+x^{2}\left(\mathrm{~d}^{2} y / \mathrm{d} x^{2}\right)=0$. Inserting the result for $\mathrm{d} y / \mathrm{d} x$, and simplifying yields $\mathrm{d}^{2} y / \mathrm{d} x^{2}=6 y / x^{2}$. These results follows more easily by differentiating $y=x^{-2}$ twice.
3. (a) $y^{\prime}=(1+3 y) /(1-3 x)=-5 /(1-3 x)^{2}$ and $y^{\prime \prime}=6 y^{\prime} /(1-3 x)=-30 /(1-3 x)^{3}$.
(b) $y^{\prime}=6 x^{5} / 5 y^{4}=(6 / 5) x^{1 / 5}$ and $y^{\prime \prime}=6 x^{4} y^{-4}-(144 / 25) x^{10} y^{-9}=(6 / 25) x^{-4 / 5}$.
