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Abstract
A total of 29 U.S. states and the District of Columbia have in place manda-

tory Renewable Portfolio Standards (RPS) which require that a minimum
amount of energy come from renewable resources. We investigate the role of
hydropower vis-a-vis other renewables under RPS. Using a Bayesian multilevel
model, we find that hydropower plants subject to RPS are more likely to plan
upgrades. These planned upgrades appear to be a substitute for solar and
wind rather than complementary reserve generation.
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1 Introduction

We investigate the effect of Renewable Portfolio Standards (RPS) on planned invest-

ments in hydropower upgrades. We also ask whether hydropower is a substitute or
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complement to other renewables. In the United States, RPS are the primary state-

level policy instruments for encouraging investment in renewable energy generation.

RPS are targets set by individual states for the amount of electrical energy which

must come from renewable sources by some specified date. Currently 29 states and

the District of Columbia have in place mandatory RPS. A further eight states have

voluntary RPS.

In many states, RPS targets are aimed at promoting increased solar and wind

power.1 Large penetration of solar and wind power presents challenges to system

reliability because these resources are intermittent, i.e., system operators are unable

to directly control their production. Because electricity is non-storable, system op-

erators must maintain reserve generation capacity – often in the form of gas-fired

combustion turbines – to meet demand when intermittent technologies are unavail-

able. Hydropower is both renewable and, in some cases, controllable.

Hydropower plants vary by technology type. Hydropower capacity that has a

river as a direct water source – run-of-river hydropower – lacks a storage reservoir

and in general has limited ability to adjust production. Similar to solar and wind

technologies, run-of-river hydropower capacity is not controllable by system opera-

tors.

Other hydropower plants store water in a reservoir. A hydropower plant with a

reservoir can quickly and at low cost adjust production levels and therefore provide

reserve generation. Some reservoir facilities also have pumped storage capabilities,
1For example, RPS in Delaware, Washington D.C., Maryland, New Jersey, and Ohio specify

that a portion of RPS energy must come from solar power. Illinois requires that a portion of RPS
generation come from wind power.
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i.e., the ability to pump water uphill from a low-lying reservoir to a higher-lying

reservoir. A significant advantage of pumped storage facilities is that water can be

pumped into the reservoir during off peak periods, when demand is low and gener-

ating capacity is plentiful. The water can be released from the reservoir during peak

periods when demand is high and capacity is in short supply. Hence hydropower has

the potential to help states meet their RPS goals while overcoming the intermittency

problem.

Many states place restrictions on the RPS eligibility of new hydropower facilities.

The construction of new dams can pose a threat to water quality and fish passage.

According to U.S. Department of Energy [18] upgrading existing plants is a primary

source of new hydropower capacity in the United States. We can find no state whose

RPS rules explicitly exclude hydropower upgrades.

We study the interaction of RPS, planned upgrades to hydropower facilities, and

existing renewable solar and wind capacity. We find that while hydropower plants

affected by RPS have higher probabilities of upgrades, the upgrade probability is

inversely related to the amount of existing intermittent capacity. In other words,

upgrades to hydropower facilities tend to be substitutes for intermittent generation,

rather than complementary sources of reserve generation.

Our data cover planned upgrades to hydropower plants in the continental United

States from 2012 through 2014. We control for substantial variation in geography,

technology type, and policy environments using a Bayesian multilevel model with

Markov chain Monte Carlo (MCMC) techniques. This method allows us to model

naturally the hierarchical structure of the data and obtain reliable inference. To
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our knowledge, this is the first study to make use of a Bayesian multilevel model

estimated by MCMC techniques in the field of energy finance.

Estimating the relationship between RPS policies and investment is subject to

endogeneity issues that may bias coefficient estimates. Environmental and other

regulations vary from state to state and can impact the timing and realization of

investment decisions. These regulations plausibly could be correlated with RPS laws.

Unobserved state-specific variables could be correlated with both our dependent

investment indicator as well as our policy variable of RPS-status.

Our model and estimation address these concerns. The use of planned2 – rather

than realized – investment addresses causality concerns by clearly establishing the

timing. We use existing solar and wind power capacity as our independent variable,

but planned upgrades as our dependent variable. Planned investment avoids the

influence of market, policy, regulatory, and/or construction-related issues which arise

subsequent to the investment decision. In addition, our focus on upgrades to existing

plants, as opposed to new plants, eliminates the possibility of self-selection into RPS

states.

The multilevel structure of our Bayesian model allows us to control for unob-

served variables while still estimating the effect of RPS status. We allow for id-

iosyncratic variation between 234 Transmission areas (TAs) in whose service areas
2We believe that the plans submitted to the EIA are credible and represent the genuine intentions

of the firms. In reporting year 2007 there were 76 hydropower generators with a planned uprate.
Of these generators, 76% had been uprated by the end of 2014. Power companies take the planning
process seriously. In forming their investment plans, planning engineers use sophisticated unit
commitment and production costing software to evaluate potential generation plans under various
sets of assumptions. The final plan submitted to the EIA are the result of significant man-hours of
work. (One of the authors (Ullrich) was responsible for maintaining the 10 year plan for an electric
utility.)
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the hydropower plants are located, by estimating random effect coefficients for each

entity.3 The partial pooling property of the multilevel model and the corresponding

estimation of meta-parameters have the dual role of avoiding undue influence of out-

liers as well as providing inference from TA status, which would otherwise lead to

perfect collinearity with the TA coefficients in a traditional fixed-effects model.

2 Literature Review

Given the overlapping character of federal, state, and local energy policy in the U.S.,

policy comparison and interaction is an active area of research. The focus has been

on the effects of energy policies on prices and generation costs (Palmer and Burtraw

[16], Wiser and Bolinger [19], and Fischer [4]). Others investigate the interaction

of RPS with other energy or climate policies (Bird, Chapman, Logan, Sumner, and

Short [2], Tsao, Campbell, and Chen [17], Amundsen and Mortensen [1], Böhringer

and Rosendahl [3], Linares, Santos, and Ventosa [11]).

While the literature is weighted heavily towards large-scale simulation studies, a

few econometric studies of the effectiveness of RPS appear. Menz and Vachon [15]

use a cross-sectional analysis and find a positive correlation between RPS policies and

renewable energy generation. However, the combination of a cross-sectional design

and the use of a realized investment variable leads to difficulties in establishing

causality. Yin and Powers [20] take into account variation between years and states

by employing a panel data set and an econometric model with year and state fixed
3Our Transmission area (TA) corresponds to “Transmission or Distribution System Owner” in

EIA860. See for example row 41 of the Field Directory tab in the LayoutY2013 spreadsheet available
from EIA.
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effects. They find that RPS laws have had a strong positive effect on renewable

energy development.

Both Menz and Vachon [15] and Yin and Powers [20] use annual data on the

realized percentage of renewables in state. They do not take into account the effect

that RPS laws have on development in neighboring states. In many cases, renewable

energy imported from a neighboring state is eligible under RPS. We include renewable

generation from neighboring states.

Linnerud, Andersson, and Fleten [12] analyze investment decisions for small hy-

dropower plants in Norway under a green certificates scheme, i.e. an RPS program.

Green and Vasilakos [9] and Mauritzen [14] show how hydropower in Norway and

Sweden helps balance intermittent wind power production in Denmark.

To the best of our knowledge, studies of how RPS policies affect hydropower

investment are absent from the literature. We aim to fill this gap.

3 Data

Table 1 gives a summary of RPS laws across states. Many states have restrictions on

new hydropower development – especially those built with dams. Other restrictions

on RPS generation include the size of hydropower plants, the location of the plants,

and the age of the plants. Massachusetts, Montana, New Hampshire, New York,

North Dakota, Oregon, Utah, and Washington all explicitly allow generation from

upgrades to existing hydropower plants to count towards meeting RPS goals. We

can find no state whose RPS rules explicitly exclude hydropower upgrades. For this
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Table 1: Renewable Portfolio Standards (RPS) vary substantially across states, rang-
ing from approximately 5% in Texas to 40% in Maine. The RPS standards often
vary in specifics, requiring differing targets for investor-owned (IOU) and versus
public utilities. Footnotes on these details are provided when appropriate. (MW =
megawatts)

State Total RPS RPS Goal Year

Mandatory Arizona 15% 2025
California 33% 2020
Colorado 30% 2020
Connecticut 27% 2020
DC 20% 2020
Delaware 25% 2026
Hawaii 40% 2030
Illinois 25% 2025
Iowa 105 MW NA
Kansas 20% 2020
Maine 40% 2016
Maryland 20% 2022
Massachusetts 21% 2020
Michigan 10%a 2015
Minnesota 25%b 2025
Missouri 15% 2021
Montana 15% 2015
Nevada 25% 2025
New Hampshire 24.8%c 2025
New Jersey 20% 2020
New Mexico 20% 2020
New York 29% 2015
North Carolina 12.5% 2021
Ohio 12.5% 2024
Oregon 25%d 2025
Pennslyvania 18% 2021
Rhode Island 16% 2019
Texas 5,880 MW 2015
Washington 15% 2020
Wisconsin 10% 2015

Voluntary Indiana 10% 2025
North Dakota 10% 2015
Oklahoma 15% 2015
South Dakota 10% 2015
Utah 20% 2025
Vermont 20% 2017
Virginia 15% 2025
West Virginia 25% 2020

a And 1100 MW.
b Xcel Energy will be required to generate 31.5% of its power from renewables by 2020.
c Hydropower specific goal of 1.5% by 2015.
d Applies only to large utilities, small utilities must meet 5–10%.
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reason, we focus on upgrades to existing hydropower facilities, defined below.

Our main source of data is Form 860 from the U.S. Energy Information Admin-

istration (EIA). We analyse all hydropower plants, thus avoiding a possible selection

bias toward plants that consider responding to RPS incentives. The form 860 data

also contains proposed changes to existing plants. We use planned upgrades to ex-

isting hydropower plants for 2012–2014. We consider three types of planned plant

upgrades in our analysis.

• Uprate: The capacity of a plant is increased by upgrading an existing generator.

• Repowering: An existing generator is replaced with a new generator.

• Generator addition: The capacity of a plant is increased by investing in a new

generator.

In our main analysis, we do not distinguish between these three outcomes, but

instead aggregate them into a binary variable which equals one if a given plant in a

given year was planning an upgrade and zero otherwise. A complementary variable

provides the size of the uprate, but only for a small subsample of planned uprates.

Capacity data are not available for repowering and generator additions.4

To get a sense of the relationship between planned investments and actual realized

investments, we looked at form 860 data from 2007, the earliest year with information

on planned uprates, and compared to realized uprates through 2014. Of the 76

hydropower generators that were planned to be uprated in 2007, 76 percent of these
4Section C in the Appendix presents the results of an analysis which uses the size of the proposed

upgrade as the dependent variable rather than a simple indicator.
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generators had been uprated by the end of 2014.5 Of the 54 generators that did

receive an uprate, 20 (37 percent) were delayed by at least one year. 10 (20 percent)

were delayed by three or more years.

Planned upgrades are distributed broadly across the United States, as shown

in Figure 1. Table 2 provides summary statistics. The data include a total of

1424 hydropower plants, 87% of which are subject to RPS laws. In total we have

4199 hydropower plant-year observations, 123 (approximately 3%) of which indicated

planned investment. The plants are distributed across 234 TAs. The average pene-

tration of intermittent (solar and wind) power for these TAs was 4.3%, with a range

of 0–89%.

To measure the size of plants, we use total nameplate capacity, which is the

official maximum rated power output of the plant. Most of the hydropower plants

are medium sized, with an average nameplate capacity of 73 MW. Approximately

20% are smaller than 2 MW, while about 2.5% are larger than 600 MW.

Washington, Oregon, and California have the largest amount of capacity, though

significant amounts of capacity also are found in New York and the southeast. The

upper panel of Figure 2 displays the geographic distribution of hydropower plants.

The size of the blue circles is in proportion to the size of the hydropower plants. The
5Consider for example the Cheoah plant in North Carolina. The Cheoah hydro plant came

online in 1919 with four turbines rated at 20 MW each. The planned upgrade of Cheoah first
showed up in EIA860 in reporting year 2007. The initial plan was to replace the first four turbines
and thereby increasing the capacity of each by 5 MW. In reporting year 2009 the planned capacity
increase changed to 7.5 MW per turbine. These upgrades were completed in 2012 and 2013. The
actual capacity increase was more than expected. A fifth turbine, with nameplate capacity of 30
MW, was added at Cheoah in 1949. A planned uprate of 5 MW for the fifth turbine showed up
in EIA860 in reporting year 2008, but was not completed by the end of our sample period. As a
result, the Cheoah plant shows a planned uprate for each of the three years in our sample.
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Figure 1: Geographic distribution of planned capacity investments in existing hy-
dropower plants as reported in the 2012–2014 EIA Form 860. The states colored
green represent those that have RPS targets.

Table 2: Summary Statistics of Hydropower Plants. (MW = megawatts)

Total # observations 4199
% of observations with planned upgrade 2.9%
Total # plants 1424
Average age 58 years
Average nameplate capacity 73 MW
Utility owned plants 62%
Plants covered by RPS laws 87%
Plants with reservoir 12%
Plants that have pumped storage 2%
# of TA’s 234
Average intermittent % of TA’s generation 4.3%
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lower panel of Figure 2 shows the geographic distribution of solar and wind power

plants. Most of the solar power distribution is found on the coasts. Wind power is

most heavily concentrated in the central United States - from Texas through Iowa

and Minnesota, as well as the western coastal states.

4 Logit Regression Analysis

We begin by conducting a simple logit regression analysis with the indicator variable

for a planned upgrade as the dependent variable. The independent variables include

an indicator for TAs located in RPS states, existing wind and solar capacity as a the

percentage of total capacity in the TA, and five variables to control for characteristics

of the plants. The regression specification follows.

investmenty,p = α + (β1 ∗ rpsy,j) + (β2 ∗ intermittenty,j)

+(β3 ∗ agey,p) + (β4 ∗ isrsrvrp) + (β5 ∗ nplatep)

+(β6 ∗ ipsp) + (β7 ∗ isutilp), (1)

where

investmenty,p is an indicator variable which is equal to one if plant p had a planned

upgrade in year y and zero otherwise,

rpsy,j is an indicator variable which is equal to one if TA j (in which plant p in

located) operates in states with RPS in place in year y and zero otherwise,

11



Figure 2: The top panel shows the geographic distribution of hydropower plants;
the size of the blue circles is proportional the size of the hydropower plants. The
bottom panel shows the distribution of solar and wind plants. The states with green
background indicate the existence of RPS laws.
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intermittenty,j is the percent of total capacity in TA j in year y which is intermittent

in nature,

agey,p is the age in years of plant p in year y,

isrsvrp is an indicator variable which is equal to one if plant p includes a reservoir

and zero otherwise,

nplatep is the nameplate capacity of plant p, in MW,

ipsp is an indicator variable which is equal to one if plant p utilizes pumped storage

and zero otherwise, and,

isutilp is an indicator variable which is equal to one if plant p is owned by a vertically

integrated utility and zero otherwise.

We divide the results in Table 3 into three sections. The first section of results,

labeled Base, presents the results for the specification in equation (1), which we label

regression I. There are two main takeaways.

First, the rps coefficient is positive and significant at the 5% level, suggesting

that upgrades are more likely for hydropower plants located in TAs which operate

in RPS states. Second, the intermittent coefficient is negative and significant at

the 1% level, suggesting that hydropower is a substitute for solar and wind, not a

complement.

In the Individual Interactions section we interact the indicator for TAs which

operate in RPS states with each of the other independent variables. The results are
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inconsistent. From regression II, when we interact rps with intermittent, we find no

effect for either the stand alone intermittent coefficient or the interaction term.

In the Base results the isutil coefficient is positive and significant at the 1%

level, indicating that plants owned by utilities are more likely to be upgraded. From

regression VII, when we interact the RPS indicator with the utility indicator, neither

the stand alone isutil coefficient nor the interaction term are significant. Notice also

that the rps coefficient is not significant in this regression. Similar issues arise in the

Full results, regression VII.

4.1 Hierarchical structure of the data

The inconsistencies discussed above may be because the simple logit regression does

not account for the hierarchical (aka, multilevel) structure of the data. Our data are

structured in four levels.

(i) For every plant, p, we have yearly observations, y, for 2012, 2013, and 2014.

(ii) Each plant has its own characteristics, e.g., size, age, hydropower type, and

corporate ownership structure.

(iii) The plants are grouped by service area via their Transmission area. Some TAs

are vertically integrated utilities that also own power plants, while others only

own the transmission infrastructure.

(iv) Finally, we group TA’s based on those which operate in states with renewable

portfolio standards and those which do not.
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Accounting for the hierarchical structure of the data is important because ob-

servations from the same level, or cluster (e.g., from the same TA), are likely to be

correlated. Ignoring this clustering can lead to unreliable inference.6

Multilevel mixed-effects logistic models which include random intercepts and ran-

dom coefficients deal with exactly this kind of problem. However, our attempts to fit

traditional multilevel models7 would not converge due to the large number of plants

and TAs. This leads us naturally to the use of Bayesian methods.

5 Bayesian Multilevel Model

We fit a multilevel (or hierarchical) regression model under a Bayesian framework,

using Markov chain Monte Carlo (MCMC) simulation techniques. Bayesian models

only recently have begun to make inroads in the economics and finance literature.

In large part this is because the software and computing power required to estimate

sufficiently realistic models only recently have become available. The main benefit of

a Bayesian multilevel model is that it can accommodate many hundreds of parameters

without overfitting.

In Bayesian analysis the model parameters themselves are considered to be uncer-

tain and are defined by probability distributions rather than point estimates, with

uncertainty estimates derived from sampling assumptions. Each parameter is as-

signed an initial prior distribution. In practice, prior distributions are often set to
6One way to handle such clustering is using fixed effects, e.g., including an indicator variable

for a particular TA. However, in this case it is not possible to separate the effects of observed
and unobserved TA level characteristics. This problem is particularly important in our case as the
effects of the observed variables are interesting in their own right.

7We used the meqrlogit command in STATA.
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be non-informative or weakly informative – placing most of the initial probability

density on a range of sensible magnitudes. The purpose of defining a weakly infor-

mative prior is to aid the MCMC software in converging by limiting the probability

space the algorithm searches.

Once defined, the model is updated by the likelihood function derived from the

data. A Bayesian model is then a weighted average of the joint prior distribution

and joint likelihood function of the model, with the weights defined by the amount

of data available.

5.1 Meta-parameters and partial pooling

In a multilevel model, lower level parameters within a certain group are derived

from a distribution characterized by meta-parameters. The estimated group-level

parameters are a weighted average of both the observations within the group as well

as the full set of observations in the dataset – a feature of multilevel models called

partial pooling.8 Partial pooling also serves as a natural form of parameter shrinkage,

which mostly eliminates the need for using corrections for multiple comparisons in

inference [7].

The partial pooling feature of hierarchical Bayesian models is particularly use-

ful for our dataset with relatively few positive responses (planned upgrades) spread

among a large number of categories. Consider, for example, a planned upgrade of a
8For intuition, consider the case of an epidemiological study of a rare disease across all counties

of the US. The average incidence of the disease by county will likely show that small rural counties
have the highest incidence of the disease, not because of any causal relationship, but simply because
by pure chance, some small counties with several hundred or thousand residents will have one or
two cases of the disease. A hierarchical model with partial pooling will correct the bias of these
statistical outliers by pulling the county-averages towards the national average of the disease [13].
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hydropower plant in an area (TA) with few other hydropower plants. A traditional

cross-sectional model might erroneously suggest that plants in this area are partic-

ularly likely to be upgraded and therefore bias the result. With partial pooling, all

the local probabilities of upgrades are pulled towards the national average, helping

to avoid such a bias.

5.2 Intuition and description of the Bayesian model

With a Bayesian multilevel models, the researcher has the flexibility in specifying

the model without relying on assumptions such as constant group-level variances

and Gaussian noise distributions. Because Bayesian simulation techniques result in

an estimate of the full joint probability distribution of the model, the inference has

the potential to be more informative than the typical point estimates and p-values

of the standard hypothesis testing frameworks [10].

5.2.1 Likelihood and fitted response data

Let L(data|θ) be the likelihood, where θ represents a vector of parameters to be

estimated and data represent all the data available for estimation. MCMC is then

used to sample θ from its posterior distribution,

P(θ|data) ∝ L(data|θ)× π(θ) (2)

where π(θ) is the prior distribution of the data.

The likelihood of the response data - whether or not an upgrade is planned in

a certain year, y, for a given plant, p – denoted investmenty,p – is modeled as a
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Bernoulli random variable transformed to the unbounded logit scale.

investmenty,p ∼ bernoulli(logit−1((Ŷy,p))) (3)

In turn, the fitted data, Ŷy,p, is assumed to be comprised of two sources of vari-

ation. Reporting-year random effects, bry
y , capture year-to-year variation that will

affect all plants reporting in a given year. In addition to the reporting-year random

effects, we also model the fitted data as a function of plant-level observable effects,

bobs
p , a coefficient which we interpret as a score indicating how likely plant p is to

have a planned upgrade.

5.2.2 Plant level scores

bobs
p = Ata + BT

ta ×Xp. (4)

The plant level scores are modeled as a vector of K plant-level variables, Xp. The

matrix of coefficients on the K plant-level variables, Bta, as well as the plant-level

intercept, Ata, are allowed to vary by TA.

The inclusion of the TA-level groupings and associated random effects is im-

portant in establishing identification of the effect of the RPS-policy and the role

of existing intermittent capacity. Consider, for example, a TA in a region with an

unobserved variable that affects both the propensity for a state to have a RPS-law

and the likelihood of a planned hydropower upgrade. This could, for example, be an

industrial presence in the region that leads to both more investment in hydropower

upgrades as well as political pressure for increased renewable energy. Such idiosyn-
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cratic variation is controlled for by the TA random effects while still allowing for the

estimation of an average treatment effect of RPS-policy.

5.2.3 Meta-parameters

There are 234 vectors Bta, one for each TA, and each contains K = 5 coefficients.

Thus there are a total of 1170 coefficients to be estimated.9 Our Bayesian multilevel

model manages the large number of coefficient estimates by assigning them higher-

level meta-parameters. These meta-parameters also have an important economic

interpretations as the contrast between plants in RPS and non-RPS TAs.

In particular, we define the meta-parameters as in (5).

Ata = αA
rps + βA

rps × intermittentta + Are
ta

Bta = αB
rps + βB

rps,k × intermittentta,

(5)

where the prior distributions on the coefficients can be written as in (6).10

9The plant-level variables are the same as in the logistic regression from Section 4, (1) whether
or not the plant uses a reservoir as a water source, (2) whether or not the plant has pumped storage
facilities, (3) whether or not the plant is owned by a vertically integrated utility, (4) total nameplate
capacity (size), and (5) operating life (age). Note here that the plant-level variables do not change
over time for a given plant, thus we estimate one vector of coefficients Bta for each transmission
area (234) and not each plant (1424).

10Both the meta-parameters for Ata and Bta are given the same weakly informative priors.
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αrps ∼ Cauchy(0, 5)

βrps,k ∼ Cauchy(0, 5)

Are
ta ∼ Cauchy(0, 5)

(6)

We follow Gelman, Jakulin, Pittau, and Su [8] and Gelman [5] in using weakly

informative Cauchy prior distributions on many of the parameters. The higher level

random effects and coefficient terms are assigned Cauchy priors with location zero

and estimated scale terms σ. The σ terms are assigned half-Cauchy prior distribu-

tions with location parameter11 of 0 and scale parameter of 2.5.12

The TA-level intercept terms, Ata are modeled as a combination of an average

mean effect which is allowed to vary based on whether the TA is in an RPS state or

not, αA
rps, and an interaction effect, βA

rps, with the percent of intermittent capacity

in the TA, intermittentta, which is also allowed to vary based on the RPS-status of

the TA. Finally, TA-level random effects, Are
ta, are estimated for each TA to capture

idiosyncratic TA-level variation. The difference between the RPS and non-RPS esti-

mates of alpha: αrps − αnot−rps gives the estimated average treatment effect of RPS

on the probability of investing in a hydropower plant.
11In a normal distribution, the location would be the mean, for example.
12The use of the Cauchy distribution reflects the fact that a large in magnitude effect of around 5

or greater on the logit scale is highly unlikely in logistic regressions in which all non-binary data has
been transformed to have mean zero and standard deviation 0.5, as we have done. In addition, the
Cauchy distribution will give answers even under complete separation, and avoids computational
problems inherent in assigning completely non-informative priors in multilevel models [8].
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5.2.4 Interpretation: Meta-parameters contrasts

The coefficients βA
rps represent the main effects of the intermittent variable by RPS-

status. The contrasts, βA
rps − βA

not−rps, represents the average interaction treatment

effect of RPS with the intermittent variable. This contrast can be interpreted as

the effect of installed capacity of renewable energy on the intention of investing

between RPS and non-RPS regimes. A positive contrast would be evidence for a

complimentary relationship between planned hydropower upgrades and intermittent

generation. A negative contrast is evidence that planned hydropower upgrades serve

as a substitute for intermittent generation.

The TA-level vectors ofK plant-level coefficients, Bta, also have meta-parameters

that can be given direct economic interpretations. The vectors αB
rps represent the

average main effects of the K = 5 plant-level variables. The k-vectors βB
rps represent

the interaction effects with the intermittent variable. These meta-parameters are

also allowed to vary by RPS-status. Thus the contrast αB
rps,k − αB

not−rps,k can be

interpreted as the interaction treatment effects of the plant-level variables with RPS

policy. For example, the contrast αB
rps,reservoir − αB

not−rps,reservoir indicates whether

the intention to invest is more likely in a hydropower plant with a reservoir under a

RPS regime. A summary of the model and hierarchy is presented in Figure 3.13

13We estimated the model with four chains and 1000 iterations, after an initial “warm-up” phase.
An “R” -statistic [6] of one indicates that the chains converged to the target posterior distribution.
We use the Stan default of extracting 2000 samples from the estimated target posterior distribution.
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Figure 3: The diagram illustrates the structure of the multilevel model used to esti-
mate the probability of investing in upgrades to hydropower plants. The likelihood
of the data is modeled as a logit-transformed bernoulli random variable. The fitted
values, ˆYy,p, are in turn modeled as a sum of plant-level effects, bobs

p , and reporting
year effects bry

y . The plant-level effects are further modeled as a TA-level intercept
terms, Ata and a vector of K plant-level covariates Xp and a corresponding vector
of their estimated coefficients Bta. The TA-level intercept terms and coefficients on
plant-level covariates are in turn modeled as a combination of an intercept term,
αrps, and an intermittency term with a coefficient βrps. Both α and β are allowed to
vary by whether the TA has a presence in a RPS state.
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5.2.5 Aggregating responses across years

We use panel data in which not all positive responses – a plant owner announcing

a planned investment in a given reporting year – indicates a unique event. A plant

owner who announces an intent to invest in 2012 and 2013 is likely referring to the

same planned investment. From the data, we calculate that a plant owner that

indicates a planned investment in one year will have a 86 percent probability of

also indicating a planned investment in the following year. While a naive analysis

that includes all the data would give too much weight to a single plant with multiple

positive responses, simple solutions like restricting the analysis to a single year would

discard data and degrees of freedom and worsen the power of the inference.

Instead of arbitrarily discarding data, the three yearly observations are grouped

together. Each plant is then modeled explicitly as a single instance with three ob-

servations. The weight given to each observation is determined endogenously in the

estimation of the full probability model.

6 Results

We follow the Bayesian practice of presenting the full marginal posterior distribution

for parameter values of special interest in the form of histograms of the samples. Ta-

ble 4 in the Appendix shows summary statistics of the main parameters. Presenting

summary statistics of the thousand-plus TA-level parameters is space-prohibitive.

Instead we present visual summaries of TA-level coefficients.

The meta-parameters αA and βA have clear and important economic interpreta-
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tions as the main average treatment effects of RPS-policy and installed intermittent

generation, respectively. In the first panel of Figure 4, the estimated distribution for

the αA parameters is displayed as a contrast αA
rps−αA

not−rps, which can be interpreted

as the treatment effect of RPS-policy on the probability of planning a hydropower

upgrade. The results indicate an approximately 90.6% probability that RPS-policy

increases the likelihood of a planned upgrade.14 These results provide evidence that

RPS policies are effective in promoting upgrades in existing hydropower facilities.

The estimated distributions on the meta-parameters βA
rps and βA

not−RP S provide

strong evidence on the main average effects of installed intermittent capacity under

RPS and non-RPS regimes. The second panel of Figure 4 shows that under the

RPS regime, over 98% of the probability mass is less than zero with a center around

-3. This provides evidence that large penetration of intermittent capacity tend to

reduce the probability of planned upgrades of hydropower plants in TA’s under RPS-

regimes. In other words, hydropower upgrades are a substitute for other forms of

renewable generation, rather than acting as complementary regulating capacity.

In contrast, in non-RPS regimes, the evidence for an effect of intermittent capacity

is substantially weaker. The distribution of the parameter βA
not−RP S, shown in the

third panel, is centered around zero.

Figure 5 presents the estimated distributions of the αB parameters, which repre-

sent the main effects on the the plant-level coefficients. For the non-RPS plants, the

coefficients are centered around zero. However, for plants under RPS, the nameplate
14In a Bayesian frameworks, probabilities can be interpreted directly as a degree of belief, as

opposed to a hypothesis-testing frameworks where evidence leads to either reject or fail-to-reject
conclusions.
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Figure 4: The first panel shows the estimated distributions of the contrast,
αA

rps − αA
not−rps, which can be interpreted as the main effect of RPS policy. The

estimation gives an 90.6% probability that the contrast is positive: That is that RPS
policy increases the probability of planned investment. The second and third panels
represent the main effects of the TA-level variable intermittent in RPS TA’s and
non-RPS TA’s. The estimation indicate a high probability of over 98% that RPS
plants are less likely to invest in new hydropower generation if there already exists
substantial amounts of solar and wind power.
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capacity variable is centered around positive 0.5. In other words, under RPS large

plants are more likely to plan upgrades. Regression IV in Section 4 was unable to

generate these results.

The coefficient on pumped-storage is distributed over mostly positive values, sug-

gesting that under RPS laws, plants with pumped storage are more likely to plan an

upgrade. The increased ability to regulate production that pumped storage provides,

and resulting increased revenue appears to lead to a higher probability of planned in-

vestments. However the estimation of the interaction term with installed capacity of

intermittent generation, shown in Figure 6, does not provide evidence that planned

investments in pumped storage have a complimentary relationship to investments in

wind and solar generation.

These findings can be interpreted in the context of the state RPS laws. The

positive values on the nameplate variable is most likely a reflection of the common-

sense idea that a larger plant has more generators that could potentially be upgraded.

However, the fact that this effect is only observed in RPS-states provides evidence of

an association between the existence of RPS-laws and planned hydropower upgrades.

The results on the plant-level coefficients provide evidence that added capacity in

hydropower is being used as a (presumably) cost effective way of meeting RPS stan-

dards, rather than as a complementary balancing generation to extra intermittent

generation.

Figure 6 shows that most of the βB terms, which represent the interaction effects

between the plant-level variables and the TA-level intermittent capacity variable, are

also centered around zero. The distributions of the parameters for age and nameplate
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Figure 5: The estimated distributions of the αB coefficients. These represent the
main effects of the plant-level variables in non-RPS and RPS TA’s. Larger plants
in RPS TA’s are more likely to plan on upgrading hydropower plants. Plants with
pumped storage facilities are also more likely to plan on upgrading. In non-RPS
areas, no such plant-level effects are found.
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capacity are centered around slightly negative values. In areas under a RPS regime

with large amounts of wind and solar capacity, older and larger hydropower plants

are less likely to plan an upgrade, relative to the main effects displayed in Figure 5.

A presentation of all the estimated parameters on the 234 TA areas would be

space prohibitive. However, Figure 7 in the appendix gives a visual summary of the

parameters Ata, which represent the intercept terms that vary by TA. The figure

shows the a 95% confidence interval of the coefficients ordered by whether the TA

was under an RPS regime and the penetration of intermittent energy generation in

the TA. The estimated Ata coefficients are on average slightly larger under a RPS

regime. Figure 7 also shows how Ata falls with high penetrations of intermittent

generation capacity. These results were captured by the meta-parameters discussed

above.

RPS standards vary substantially by state. Because our observations are rel-

atively evenly distributed between 23 states, attempting a state-by-state analysis

becomes prohibitive due to a lack of data and relatively scarce positive outcomes.

However, state-by-state variation is taken into account in the multilevel model by

way of the TA-level random effect terms, Ata
re. A visual summary of the distributions

of these random effects do not show any discernible pattern when ordered by the

RPS level, as shown in Figure 8 in the Appendix.

As an additional robustness check, we also explore models where proposed ca-

pacity of uprates are used as the dependent variable. The results can be found in

Section C in the Appendix. The results are consistent with those we have presented

here.
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Figure 6: The estimated distributions on the βB coefficients. These represent the
interactions between the plant-level variables and the TA-level intermittent variable.
Planned hydropower capacity additions are more likely in smaller and newer plants
when the purpose is as a substitute for intermittent generation to meet a renewable
portfolio standards.
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7 Discussion and Conclusion

Our main findings are as follows.

• Renewable portfolio standards (RPS) are associated with higher probabilities

of planned investment in hydropower upgrades.

• Plants with pumped storage facilities tend to have a higher probability of

planned capacity upgrade.

• Planned hydropower upgrades are negatively correlated with the amount of

installed intermittent generation, though only where RPS laws apply.

Our results indicate that planned hydropower capacity additions are being used

as a way of meeting RPS laws as a substitute for intermittent solar and wind power

rather than as a complementary balancing investment. The pattern of investment

decisions tends to match restrictions that many states have in place for hydropower,

and areas with large amounts of solar and wind power tend to see less probability of

investment in hydropower capacity.

We account for two sources of unobserved variables that could bias our results.

A multilevel model allows us to control for unobserved geographic variables. The use

of planned investment rather than realized investment avoids the influence of con-

founding regulatory factors and other unobserved variables that affect the timing of

completed investments. However, states with large amounts of hydropower capacity

could be motivated to implement RPS laws because they have renewable genera-

tion in place. Figure 2 displays no clear relationship between (initial) hydropower

resources and existence of RPS laws.
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Despite the model’s attention to possible sources of endogeneity, it falls short

of estimation based on random placement into treatment and control groups, and

the results should be interpreted with this in mind. That said, we believe we have

controlled for the major sources of endogeneity.

We note that, despite the rapidly falling costs of solar and wind power and the

many restrictions put on hydropower investments, investments in hydropower expan-

sion are still competitive – at least in certain forms and in certain areas. Perhaps,

just as in financial markets, utilities are interested in having a diversified portfolio

of generating assets.
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Appendix
A Bayesian model summary statistics
Table 4 shows summary statistics of the marginal posterior distribution on the upper
level estimated parameters. The table shows the 2.5, 15, 50, 85, and 97.5 percentiles
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of the simulated distribution on the parameters. The probability mass between the
15th and 85th percentile is approximately equal to +/- 1 standard deviation from the
median in a standard normal distribution. The probability mass between the 2.5th
percentile and 97.5th percentile is approximately equal to 2 standard deviations from
the median in a standard normal distribution.

B TA-level coefficients

Figure 7: The estimated 95% confidence intervals of TA-level coefficients, Ata, or-
dered by whether the TA is under a RPS and then by the amount of intermittent
capacity in the TA area. The figure shows how the average Ata coefficient is on
average slightly larger under an RPS regime. The figure also shows how Ata falls
with high penetrations of intermittent energy.
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Table 4: The table presents summary statistics of the estimated marginal posterior
distributions on the upper-level coefficients of the model. The αA represents the
intercept terms. The αB parameters represent the main effects on the plant-level
variables. The βA variables represent the the main effects on the intermittent ca-
pacity variable. βB parameters represent interaction effects between the plant-level
variables and the intermittent capacity variable.

2.5% 15% 50% 85% 97.5%
param var
αA not_rps -7.652 -5.776 -1.785 -0.001 0.414

rps -4.921 -4.440 -0.712 0.325 1.196
αB isrsrvr_not_rps -2.004 -0.790 -0.056 0.474 1.149

isrsrvr_rps -2.379 -1.669 -0.916 -0.294 0.013
pumped_storage_not_rps -9.916 -2.220 -0.260 0.285 1.381
pumped_storage_rps -0.774 -0.276 0.099 0.605 1.254
utility_not_rps -1.706 -0.551 -0.012 0.620 1.738
utility_rps -0.383 -0.117 0.129 0.466 0.741
nameplate_not_rps -4.062 -1.006 -0.066 0.582 1.799
nameplate_rps 0.326 0.535 0.845 1.233 1.579
age_not_rps -1.591 -0.757 -0.132 0.293 0.801
age_rps -0.337 -0.111 0.102 0.346 0.610

βA not_rps -11.309 -3.314 -0.607 0.244 1.139
rps -3.902 -2.889 -1.858 -0.989 -0.276

βB isrsrvr_not_rps -4.625 -1.559 -0.067 1.324 3.354
isrsrvr_rps -2.381 -0.773 0.175 1.459 2.974
pumped_storage_not_rps -4.340 -1.071 0.315 4.954 22.835
pumped_storage_rps -3.631 -1.173 0.049 1.328 3.713
utility_not_rps -12.295 -3.108 -0.418 0.643 2.926
utility_rps -1.105 -0.396 0.321 1.474 2.846
nameplate_not_rps -5.350 -1.276 0.157 2.287 13.098
nameplate_rps -4.528 -3.470 -2.315 -1.318 -0.721
age_not_rps -2.616 -0.847 0.134 1.369 4.073
age_rps -2.986 -1.979 -0.806 0.019 0.793
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Figure 8: The estimated 95% confidence intervals of the TA-level random effects
coefficients, Are

ta, ordered first by whether the TA is under a RPS, and then by the
RPS level, in percent. The blue text refers to the RPS level. The numbers under
the non-RPS side refer to states with voluntary RPS laws. No pattern is apparent
between the random effects terms and the RPS-target.

C Robustness: Proposed uprate capacity
The structure and availability of the data suggested a binary outcome variable in
our main analysis. As a robustness check, we use the 2014 data to complete an
analysis in which the outcome variable is a continuous variable of proposed upgrade
capacity. We have available data for only those plants that were planning an uprate,
and even here, some data were missing. In total we have data for proposed capacity
of approximately half of the positive outcomes.

Replicating the full Bayesian probability model with capacity as the dependent
variable is infeasible. There are not enough positive responses in order to estimate
a complete multilevel model which fully takes into account heterogeneity across a
large number of geographies and technologies.

Instead, we present results from two simpler models in Table 5. In these re-
gressions, the plant-level variables are included identically in each model with fixed
coefficients. TA-level variables indicating whether a plant is under an RPS-regime
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and how much intermittent capacity is present in the TA are also present in both
models. In the first model, these TA-level variables are entered as fixed coefficients
with an interaction term. In the second model, the intercept term and the intermit-
tent variable have coefficients that are allowed to vary between RPS and non-RPS
regimes.

We focus on the results from the latter model as they are most in line with the
full model. In particular, we find that the intercept term under RPS-regime is signifi-
cantly positive. On the other hand the intercept term is not found to be significantly
different from 0 in the non-RPS regime. This is consistent with our earlier results
that found RPS-regimes did have a positive impact on planned hydropower upgrades.

We also find that the intermittent coefficient is significantly negative under RPS
regimes, but insignificant under non-RPS regimes. This is also consistent with our
results from the complete model that hydropower upgrades play a role as substitutes
for wind and solar power, rather than as complementary balancing power.
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fixed varied
Intercept −0.063 0.074

(0.177) (0.158)
isrsrvr 0.859∗∗∗ 0.860∗∗∗

(0.145) (0.144)
nameplate_100mw 0.016∗∗ 0.016∗∗

(0.005) (0.005)
age_10 −0.043∗∗ −0.042∗∗

(0.015) (0.015)
utility 0.215∗ 0.210∗

(0.103) (0.102)
intermittent 0.116

(1.257)
isRPS 0.365∗

(0.145)
intermittent:isRPS −0.765

(1.345)
Intercept, RPS 0.268∗∗

(0.054)
Intercept, not RPS −0.029

(0.108)
intermittent, RPS −0.403∗∗

(0.113)
intermittent, not RPS 0.216

(0.226)
AIC 8460 19830
Num. obs. 3996 3996
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5: Results from a model with proposed capacity uprate as the dependent
variable. The first column shows results where the RPS variable and intermittent
variable enter with fixed coefficients. In the second column, the intercept and inter-
mittent variables enter with coefficients that vary by RPS status. The results are
consistent with those found in the complete probability model.

39


	Introduction
	Literature Review
	Data
	Logit Regression Analysis
	Hierarchical structure of the data

	Bayesian Multilevel Model
	Meta-parameters and partial pooling
	 Intuition and description of the Bayesian model
	Likelihood and fitted response data
	 Plant level scores
	Meta-parameters
	Interpretation: Meta-parameters contrasts
	Aggregating responses across years


	Results
	Discussion and Conclusion
	Bayesian model summary statistics
	TA-level coefficients
	Robustness: Proposed uprate capacity

