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Abstract

I examine the labor market effects of wind power investment in rural counties in the
US. I combine quarterly panel data on county employment and wages with data on all
wind power plant investments larger than 1 mega-watt (MW). I argue that wind power
investments can to a high degree be considered exogenous to outcomes in labor markets
due to a dependence on average wind speeds. In addition, identification is achieved
through a multilevel model where unobserved time-invariant county variables are con-
trolled for. I find no significant effect on net employment, but find that on average, a
mid-sized 200 MW wind farm leads to a permanent increase in wages of approximately
2.5 percent. The findings have implications for energy policy and provides a case-study
that can inform broader questions and discussions of US labor market. I estimate the
model with a Bayesian approach, using Markov Chain Monte-Carlo simulations.

1 Introduction

Economists have increasingly come to recognise that a large swath of the US population has

been left out of the benefits of the last several decades of economic growth in the form of poor

job prospects, stagnant wages and decreasing income mobility. This trend has been ascribed

to increased automation and mechanisation, outsourcing to countries with cheaper labor

costs, and lack of critical skills among the labor force [Autor et al., 2015, Acemoglu et al.,

2015, Autor, 2014, Chetty et al., 2017]. In a related trend Case and Deaton [2015, 2017]

1



document the dramatic reversal of health and morbidity outcomes among the working class,

which are driven by substantial increases in “deaths of despair”: Drug overdoses, suicides

and alcohol-related disease.

While metro areas have not been immune to these trends, rural areas and small towns

tend to have an over-representation of the demographics that have been most effected: non-

hispanic white, middle aged, working class, and no college degree. Rural areas and small

towns were particularly hard hit in the most recent recession and experienced steeper falls

in both employment and wages [USDA, 2016].

But amidst a dearth of investments and deteriorating job possibilities in rural and small-

metro counties, a bright spot has been investments in wind turbines and wind farms. The

cost of wind power fell by 75 percent between 1984 and 2014 and is cost competitive in most

locations in the US without subsidies [Trancik, 2015]. Wind power has then moved from

being a niche and highly subsidized generation found mostly in rich states, to a competitive

form of power generation that now makes up a significant portion of generation in states with

substantial rural areas such as Iowa, South Dakota, Texas, and Wyoming. Decreasing costs

and wider penetration has also meant that the wind power industry is playing a growing role

in the US labor market as a whole. The U.S. Department of Energy (DOE) estimates that

as of 2015, the wind power industry supported approximately 50,000 jobs. The DOE further

extrapolates that if wind power penetration continues to grow, the industry could support

up to 600,000 jobs by 2050.1

In contrast to traditional power plants, that tend to be relatively compact and are gen-

erally located close to population centres, modern land-based wind turbines are often over

80 meters tall with blade-lengths of over 100 meters 2. Out of spatial necessity, investments

in wind turbines tend to happen away from large population centres.

Investments in wind power will of course have an impact on economic growth and lead

to job creation in both the manufacturing, installation and maintenance of the turbines.

1https://energy.gov/eere/articles/wind-energy-supporting-600000-jobs-2050.
2The wingspan of a 747 jumbo-jet is approximately 60 meters
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They will also generate revenues for land-owners who either lease land for wind turbines or

own the turbines directly, sometimes through a cooperative structure. However, it is ex-ante

unclear how and to what extent these economic effects influence the local labor market.

Conceivably, it may make sense to employ skilled labor from outside the county hosting a

wind power plant for both the initial build-out as well as subsequent maintenance and repair.

Because wind turbine maintenance and repair is a skilled occupation, even if an in-county

job is created, it is not clear to what extent this would be a net-increase in employment as

opposed to a skilled worker moving from one position to another.

The role that leasing payments or profits from the sale of electricity has on local labor

markets is also ex-ante unclear. Agricultural land is to a growing extent held by corporations

or individuals who are not located in the same county or even state. The income from wind

turbines in the county may, in many cases, end up flowing completely out of the county.

I use data from the Energy Information Agency form 860 on all wind power installations

over 1 MW in the United States and match it with data on quarterly wage and employment

data from the Bureau of Labor Statistics Quarterly Census to estimate the effect of wind

power investments on wages and net-employment in rural counties.

The effects of wind power, and more generally renewable energy on economic growth and

labor markets has been an active topic of research, especially in Northern Europe where

generous subsidies led to early and sustained investment in renewable energy [Lehr et al.,

2012, 2008, Ejdemo and Söderholm, 2015]. Studies of the US have been more sparse [Haerer

and Pratson, 2015, Wei et al., 2010]. A common element of these studies is that they

tend to be aggregated to the regional or national level, without considering the geographic

distribution of economic effects. The results are often based on only partially empirical

methods–large scale input-output models calibrated to aggregated data on investments and

penetration, but highly dependent on modelling assumptions.

Comparisons can be made to the local economic effects of another recent energy boom.

The Shale oil and gas boom, driven by technological advances in ”fracking” [Gold, 2014]
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also primarily affected rural areas in the major petroleum-containing formations in the US.3.

Komarek [2016], Weber [2012] and Brown [2014] all find substantial increases in employment

and wages in counties that experience a boom in oil and gas extraction. Importantly though,

these economic and labor market effects often retreat or disappear as oil and gas wells run

dry.

Wind turbines, on the other hand, tend to have a mechanical life of over 20 years. More

so, older wind power sites tend to get re-powered–that is the turbines get replaced by newer,

more efficient turbines–as the wind resources and transmission infrastructure make such sites

ideal for continued investment [Mauritzen, 2014]. The local economic effects of wind power

may not be of the initial magnitude of petroleum finds, but the effects can be expected to

be more permanent.

Unique to studies of investments on labor markets, wind power investment decisions

can be seen as exogenous to labor markets. The most important factor in the profitability

of a wind farm is the average wind speed of a location. However, there remains good

reason to believe that labor market outcomes and investment in wind power could be partly

endogenously determined. On the margin, counties more likely to attract wind power projects

could, for example have the necessary transmission infrastructure in place, or have local

governments that are more investment friendly, with stream-lined processes for permits and

approvals. These unobserved variables could also be correlated with labor market outcomes.

Further aiding identification, I use a panel of data with 30 quarterly observations on labor

market outcomes for every county in the United States. Intercepts and both deterministic

and stochastic trends are allowed to vary by county. I then compare outcomes before and

after a wind power investment, both measured as a temporary jump and permanent shift.

These parameters are also allowed to vary by county. In turn, these county parameters

are themselves modelled together with relevant county-level variables. An average effect is

then estimated through a common distribution for the county parameters with associated

3The Bakken formation in North Dakota and Montana, The Marcellus in the north-east, and the Barnett
in Texas
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meta-parameters. From this multilevel structure, I can estimate an average treatment effect

of wind power investment across counties while allowing for varying intercepts and trends

by county. The multilevel model also has the attractive feature of automatic shrinkage of

county coefficients through partial pooling. The model is fit using Bayesian Markov-Chain

Monte Carlo (MCMC).

The results indicate that wind power investments have no significant effect on employment

in rural counties. However, a significant effect on wages is found. A 200 megawatt (MW)

wind farm–approximately the capacity of 60 modern turbines–leads to a median permanent

increase in wages of 2.5 percent in rural counties.

Wind power has traditionally received subsidies–in the form of federal tax credits as

well as various state and local incentives. Environmental and climate externalities are often

given as the justification for such subsidies. This article informs renewable energy policy by

suggesting a distributive effect of wind power policy. Claims that wind power will lead to

significant job gains in struggling rural areas do not appear to have strong support in the

data, though wind power investments do appear to press up wages.

The case of wind turbines also has the potential to inform broader questions about labor

markets. The results of this research are consistent, though not exclusively so, with a skills-

based explanation of the weak rural US labor market. When a lack of a skilled work force is

the constraining factor, new job opportunities due to an exogenous placement of a wind farm

would be expected to have limited effects on the number of employed, while still pressing up

wages. This could be a promising route for researchers with access to detailed employment

micro-data.

2 Data

I combine data from three sources. Data on investments in wind energy plants is from the

U.S. Energy Information Agency (EIA) form 860.4 This data provides yearly information

4https://www.eia.gov/electricity/data/eia860/
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County Rural-Urban Continuum Codes (RUCC)

1 Counties in metro areas of 1 million population or more
2 Counties in metro areas of 250,000 to 1 million population
3 Counties in metro areas of fewer than 250,000 population
4 Urban population of 20,000 or more, adjacent to a metro area
5 Urban population of 20,000 or more, not adjacent to a metro area
6 Urban population of 2,500 to 19,999, adjacent to a metro area
7 Urban population of 2,500 to 19,999, not adjacent to a metro area
8 Completely rural or less than 2,500 urban population, adjacent to a metro area
9 Completely rural or less than 2,500 urban population, not adjacent to a metro area

Aggregated categories

1 Metro counties (1,2,3)
2 Non-metro with urban population, adjacent to a metro area (4,6)
3 Completely rural, or small urban population not adjacent to metro area. (5, 7, 8, 9)

Table 1: Rural Urban Continuum Codes obtained from the Department of Agriculture
Economic Research Service (ERS) are aggregated into three broader categories.

on every power plant and planned power plant with capacity of over 1 MW in the United

States. Data is at the generator level. Variables include the date of first operation, size of

generator, county of generator, ownership, and grid connection.

Data on quarterly county-level labor market outcomes is from the Bureau of Labor Statis-

tics (BLS) Quarterly Census of Employment and Wages.5 Variables include average weekly

wages and employment for each of the 3223 U.S. counties.

I classify the counties based on U.S. Department of Agriculture’s Economic Research

Service (ERS) Rural-Urban Continuum Codes (RUCC).6 from 2013. County designations

are updated every 10 years based on decennial Census data. RUCC codes go from 1-9, as

defined in table 1. In order to simplify the analysis, I aggregate the designations into three

broader categories, which are also shown in the lower pane of the table. The aggregated

categories are meant to separate out metro areas and counties adjacent to metro areas from

those that consist of rural areas and small towns not directly connected to a big city economy.

From now on I will simply refer to these three categories as “Metro”, “Adjacent metro” and

5https://www.bls.gov/cew/
6https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/
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“Rural”.

Many recent analysis of the US labor market have used Commuting Zone (CZ), as de-

veloped by Tolbert and Sizer [1996], as the geographic unit. CZs approximate the labor

markets associated with metro areas which often stretch across metropolitan and suburban

counties. I do not, however, make use of CZ’s as I am explicitly concerned with rural and

small-town counties not adjacent to metro areas.

Additional data on county population and agricultural land values was obtained from

the ERS 7. These variables can clearly change over time, however they are only available at

10-year intervals, with the most recent year being 2013. In the analysis, these variables then

appear as time-invariant county-level variables.

The upper pane of figure 1 shows the distribution of counties by rural-urban indicator.

The lower pane of the figure shows the distribution of operating wind power plants. Rural

counties have clearly seen a large share of wind power investments. Figure 2 shows that

rural counties have been the location of nearly half the total wind power capacity and that

capacity additions in rural areas more than doubled in the period studied.

Comparing the distribution of wind power in figure 1 to a map of average wind resources

produced by the US National Renewable Energy Laboratory (NREL) (See figure 18 in the

appendix) gives a visual impression of the high correlation between wind resources and the

geographic investment decision. As mentioned, the most important factor in the capacity

factor and in turn profitability of a wind turbine is the average wind speed of the turbine

location. The physical relationship between power generation and average wind speed is

cubic8. Average wind speed is then a dominating factor in the geographic investment decision

and, arguably, exogenous to economic and labor market variables.

The upper pane of figure 3 shows that employment in non-metro areas has been largely

stagnant since 2009 compared to metro areas. As the lower panel shows, however, wage

7https://www.ers.usda.gov/topics/farm-economy/land-use-land-value-tenure/farmland-value/
8A simplified equation for wind power output can be written P = kCp

1
2ρAV

3, where P = Power output,
Cp = Maximum power coefficient, ρ = Air density, A Rotor swept area, V = wind speed, k = a constant.
[MacKay, 2016]
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Figure 1: The upper pane of the figure shows the distribution of counties by the rural-urban
indicator. The lower pane shows the distribution of wind power plants across the U.S. Wind
power plants tend to be concentrated in rural counties.
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Figure 2: Almost half of all wind turbine ca-
pacity is located in rural areas. Wind power
capacity more than doubled in the period
studied.

Figure 3: Employment growth in non-metro
counties has lagged significantly behind em-
ployment in metro counties. Average wage
growth, has, however been similar between
metro and non-metro counties, through from
a lower absolute level.

growth has been similar in both rural and metro areas, though rural wages fell more during

the preceding recession.

3 A multilevel model of wind investment and labor

market outcomes

In the model of the employment effects of wind power investment, the response variable is

employment in county c at time t, employmentc,t. This variable is transformed by subtracting

the county mean and dividing by two times the standard deviation of the county employment.

This transformation allows for meaningful comparisons of counties of different populations

and employment pools. Dividing by two standard deviations maintains coherence when

comparing coefficients to binary variables. [Gelman and Hill, 2006].

All other continuous variables are transformed in a similar manner though where the

9



mean and standard deviation are calculated from the entire data range and not only within

each county. These transformation have the added benefit of aiding the convergence of the

MCMC algorithm.[Gelman et al., 2013]. Binary variables are not transformed.

log emplc,t =
log(employmentc,t)−mean(log(employmentc,t))

2 ∗ std(log(employmentc,t))
(1)

The likelihood of each response is modelled as a normal random variable with mean ŷc,t

and standard deviation σy.

log(emplc,t) ∼ normal(ŷec,t, sigma
y,e) (2)

Analogously, for the wage effects of wind power investment, the response variable is log

of wages in county c at time t, log(wagesc,t). The likelihood of each response is modelled as

a normal random variable with mean ŷc,t and standard deviation sigmay.

log(wagesc,t) ∼ normal(ŷwc,t, sigma
y,w) (3)

The fitted response data, ŷc,t is in turn modelled simultaneously by two hierarchical equa-

tions. To attain the final specifications for the models of employment and wages, I followed

a process of estimating the models and checking the fit, making particular use of posterior

predictive checks [Gelman et al., 2013] to be discussed further below, and Watanabe-Akaiki

Information Criterion (WAIC).

Equation 4 describes the model at the observation level in a log-linear form. The fitted

values for log employment are modelled as an intercept term, αc, a stochastic trend θc and

four time-varying covariates with corresponding parameters βic where i ∈ {0, 1, 2, 3}. As the c

indexing indicates, all of these variables are allowed to vary by county. A vector of quarterly

dummy variables, quartert are included to control for seasonality, as rural counties tend to

have a high proportion of seasonal workers.
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The covariates include an indicator for the period, periodc,t in quarterly intervals. The

estimated parameter β0,e
c then represents a linear time trend on the log employment. The

variable capacity additionc,t indicates the amount of capacity that was installed in a given

county at time t. The parameter β1,e
c represents the immediate but temporary effect on

employment of an investment. Because the data indicates when an investment is completed,

A forward lag, capacity additionc,t+1 is also included in order to capture employment effects

for work-in-progress. Additional forward lags are not included as they can not be shown to

add predictive power to the model.

The variable capacityc,t indicates the total wind power capacity in county, c in period

t. The parameter β3,e
c is then an indication of the permanent employment effects of a wind

power investment. Figure 4 shows a simplified illustrative diagram of the model for the log

of employment over time with a wind power investment at time t. For the sake of simplicity,

the diagram does not show potential effects of a forward lag parameter nor a stochastic

trend.

ŷec,t = αec + θyec,t−1 + β0,e
c periodc,t + β1,e

c capacity additionc,t + β2,e
c capacity additionc,t+1

+ β3,e
c capacityc,t + ζq,equartert (4)

For the model of wages, the specification for the observation level equation is similar to

that of employment. The main difference is the absence of a stochastic trend term (equation

5). The log wage series have less variance within a county and a linear trend and seasonal

dummies are sufficient to obtain a satisfactory fit.9

9The empirical observation that wages have less variance than employment is well known theoretically
grounded in the macroeconomics literature.
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Figure 4: The diagram illustrates the observation level equations for each county. The
diagram excludes illustrations of forward lags and a stochastic trend for simplicity.

ŷwc,t = αwc + β0,w
c periodc,t + β1,w

c capacity additionc,t + β2,w
c capacity additionc,t+1

+ β3,w
c capacityc,t + ζq,wquartert (5)

For both the wage and employment models, the c underscript in the parameters αc and

βic signifies that these parameters are allowed to vary by county. Estimating this equation

then involves estimated several parameters for each of 1140 rural counties plus the quarterly

dummies.

This large pool of parameters is only meaningful if they themselves are modelled at a

higher level by meta-parameters: A.) In order to avoid overweighting of outliers and false

inference from multiple comparisons, and more importantly B.) To provide average inference

and identification across counties. Equation 7 shows that the αc parameters are modelled by

an average intercept term,Γa and by two time-invariant county-level covariates, the county
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population, populationc from the 2010 Census and the log of agricultural land value.10 with

corresponding parameters Φ1 and Φ2. A county random effect, αrec is included to model

idiosyncratic county-level variation.

The βic parameters are modelled simply as a pooled mean effect, Γi and an idiosyncratic

county-level random effect βi,rec .

The hierarchical form of the model then allows each of the county-level coefficients and

intercepts to be decomposed into a pooled average effect, as well as an idiosyncratic county-

level random-effect. Such a “partial-pooling” model avoids undue influence by outliers by

pulling them towards a grouped mean. Importantly they also allow for inference on average

effect, while controlling for geographic variation and naturally taking into account issues

of multiple comparisons through parameter shrinkage. For more in-depth discussions of

mutlilevel models11 and partial pooling I refer to Gelman and Hill [2006] and McElreath

[2015].

αc = Γa + Φ1populationc + Φ2log agg land valuec + αrec (6)

βic = Γi + βi,rec i ∈ {0, 1, 2, 3} (7)

4 Model fitting with Bayesian MCMC

I use Bayesian Markov Chain Monte-Carlo (MCMC) simulation to fit the model using the

Stan probabilistic programming language [Stan Development Team, 2014], which utilizes

Hamiltonian MCMC (see MacKay [2003, ch. 30]) and a No-U-Turn Sampler [Homan and

Gelman, 2014] for efficient sampling in high-dimensional probability space.

10Here invariant refers to the available data. Population and land values, of course, can and will change
over time, however I do not have available quarterly or yearly estimates of either variable.

11Multilevel models are also referred to as random effects models, hierarchical models, and in the case of
linear models: linear mixed models.
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Weakly informative Cauchy priors12 are assigned to the parameters as shown in equations

8. The corresponding variance terms, σ are themselves assigned half-Cauchy priors with with

location parameter 0, and variance parameter of 5. Weakly informative priors have the effect

of focusing the initial draws of the MCMC algorithm to reasonable values of the parameters,

with the fatter tails of the Cauchy distribution, as opposed to a normal distribution, allowing

for a non-negligible probability of outliers. The priors do not, however, impose any strong

assumption of prior information on the model results. Use of the Cauchy prior distribution

also allows for inference in the case of complete separation by covariates [Gelman, 2006].

Γi ∼ cauchy(0, σi) i ∈ {0, 1, 2, 3, 4}

Γα ∼ cauchy(0, σα) i ∈ {0, 1, 2, 3, 4}

φj ∼ cauchy(0, σφ) j ∈ {0, 1}

αrec ∼ cauchy(0, σα
re

) (8)

βkc ∼ cauchy(0, σqtr) k ∈ {5, 6, 7, 8}

βl,rec ∼ cauchy(0, σre)

σm ∼ half-cauchy(0, 5) m ∈ {0− 4, y, α, αre, re, φ, qtr}

The Hamiltonian MCMC routine was run with four chains and 1000 iterations. R-

statistics of 1 indicated convergence of the simulation to the target probability [Gelman

et al., 2013].

12The Cauchy distribution is a t-distribution with 1 degree of freedom.
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5 The effect of wind power investment on Labor Mar-

ket outcomes

Since parameters are treated as random variables in Bayesian analysis, I present coefficients

as distributions in the form of histograms and percentiles. Presenting the 6000-plus β and

α distributions is space prohibitive. More so, the parameters of interest are the meta-

parameters that provide average inference across counties. In particular, the Γ parameters

provide inference for the variables of interest: wind power investment and capacity.

5.1 The effect of wind power investment on employment

Figure 5: Estimated distribution of Γi,e pa-
rameters from top to bottom panel: Cross
county average of (i = 0) trend, (i = 1)
temporary effect in quarter of first operation
(i = 2) temporary effect, 1-quarter forward
lag, (i = 3) permanent effect. No signifi-
cant measurable evidence of temporary nor
permanent effect on employment.

Figure 6: Posterior predictive check of the
rural employment model. The blue lines are
simulations from the probability model from
a selection of rural counties. The black lines
are the actual series. The probability model
has a good fit to the realised time series.

Figure 5 shows summary histograms of the estimated distributions over the Γi,e parame-

ters for the regression on county employment. Table 2 shows percentiles for the Γi,e as well

as other meta-parameters. Γ0,e is the variable on the period variable, and thus represents the

trend of log employment. A positive coefficient then represents a positive average growth

rate of employment across rural counties.
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Percentile 2.5 15 50 85 97.5

Γ0,e 1.192 1.265 1.382 1.483 1.552
Γ1,e -0.015 -0.004 0.005 0.020 0.030
Γ2,e -0.013 -0.004 0.007 0.016 0.024
Γ3,e -0.025 -0.011 -0.001 0.008 0.018
Γa,e -0.218 -0.123 0.029 0.202 0.347
Φ1,e -0.007 -0.003 -0.000 0.003 0.006
Φ2,e -0.007 -0.003 -0.000 0.002 0.006

Table 2: Percentiles of main parameters for model of rural employment.

Of more interest, the distributions of Γ1,e and Γ2,e parameters, which represent the im-

mediate average effect on employment of a wind power investment and a forward lag of one

quarter respectively, have distributions centered around zero. This can be interpreted to

mean that there is no evidence for a immediate temporary positive effect on local employ-

ment from the initial build-out of a wind power farm. Arguably, construction of a wind farm

could have an effect on employment more than 1 quarter before project completion, how-

ever specifications with additional forward lags also failed to show any significant temporary

effect and did not increase the explanatory power of the model.

The distribution on the Γ3,e parameter represents the permanent effect of a wind power

plant investment on employment. This distribution is also found to be centered around zero.

Figure 6 shows the posterior predictive check of the model specification for a sample of

counties. The blue lines represent 100 draws from the posterior distribution over the in-

sample data, giving an impression of the uncertainty in the model. The black lines represent

the actual realised data on log employment for the counties. Visually, the model gives

adequate coverage for the realised data. Watanabe-Akaiki Information Criterion (WAIC)

were also used to compare model specifications.
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5.2 The effect of wind power investment on wages

Figure 7 gives an overview of the estimated distributions over the Γi,w parameters for the

model of rural wages. The Γ0,w parameter, which represents the average trend line of wage

growth in rural counties, shows a distribution over positive values. Interestingly, comparing

the average estimate wage growth rate to that of metro counties, which can be found in the

appendix, rural wage growth has actually been higher than in metro areas. However, average

wages were at an absolute lower level and had fallen more during the preceding recession in

rural counties.

The Γ1,w and Γ2,w parameter distributions, which represent the immediate temporary

effect of a new wind power plant on wages from construction and planning activities, are again

centered around zero. The construction of wind farms do not appear to have a measurable

effect on rural county wages.

However, the distribution of the Γ3,w parameter, which represents the permanent effect

of a wind power plant on wages, has a median value of 0.055 with a 95% confidence interval

between 0.003 and 0.107. Interpreting from the mean value of wages across counties, this

means that a mid-to-large sized wind farm with capacity of 200 MW13 in a rural county is

estimated at the median of the posterior to permanently raise wages by approximately 2.5

percent, an economically significant increase.

Figure 8 again shows the posterior predictive check of the model specification for a sample

of counties. The linear trend in the model appears to be adequate for the realised wage series

in most counties.

A testable hypothesis and robustness check for the result that wind power increases

average wages in rural counties, is that the same will not be true in metro counties. In metro

counties, with varied industries and a large employment pool, even a large wind power plant

will be expected to have a negligible impact on average wages. Therefor, if a significant

13A wind farm consisting of approximately 60-70 modern turbines would have a total capacity of approx-
imately 200 MW
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Figure 7: Estimated distribution of Γi,w pa-
rameters: Cross county average of (i = 0)
trend, (i = 1) temporary effect in quarter
of first operation (i = 2) temporary effect,
1-quarter forward lag (i = 3) permanent ef-
fect. No measurable evidence of temporary
effect on wages, but significant permanent
effect on wages.

Figure 8: Posterior predictive check of the
rural county wages model. The blue lines are
simulations from the probability model from
a selection of rural counties. The black lines
are the actual series. The probability model
has a good fit to the realised time series.

positive coefficient is estimated also for metro counties, then an unobserved variable is likely

being confounded with wind power investment in the estimation of the Γ3,w parameter.

Results from a full wage model with all counties can be found in section A in the appendix.

I do not find a significant effect of wind power investment on wages in either metro counties

nor counties adjacent to metros.

A presentation of all the individual county coefficients is space prohibitive, but figure 9

presents a summary of the estimated β3,w
c coefficients–representing the permanent effect of a

2.5 15 50 85 97.5

Γ0,w 2.827 2.853 2.882 2.913 2.936
Γ1,w -0.012 -0.004 0.004 0.014 0.022
Γ2,w -0.013 -0.003 0.005 0.014 0.022
Γ3,w 0.003 0.027 0.055 0.082 0.107
Γa,w -0.192 -0.135 -0.106 -0.043 0.030
Φ1,w 0.267 0.285 0.309 0.331 0.351
Φ2,w -0.138 -0.117 -0.096 -0.071 -0.049

Table 3: Summary distribution of main parameters for model of rural employment.
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wind power investment on wages–for the 120 rural counties that experienced a wind power

investment in the period studied. The black vertical lines in panel A show 95% credible

intervals of the β3,w
c parameters ordered in descending order by the absolute increase in

wind power capacity in the county. For reference, the estimated median value of the meta-

parameter, Γ3,w = .055 is also shown. The partial-pooling property of the hierarchical model

has the effect of shrinking the county β3,w
c parameters towards the mean Γ3,w parameter.

As discussed earlier, this provides both a natural method of obtaining average, cross-county

inference that takes into account the clustering of the data, as well as a addressing the

multiple-comparison problem when estimating many parameters.

Because of the transformations of the data, the estimated parameters do not provide a

intuitive interpretation. Therefor, for each county, c, and corresponding parameter, β3,w
c , I

calculate a county total average effect, effectc on wages of the total wind power capacity in

the county, capc. These estimates can be interpreted as the permanent effect on wages of the

installed wind power capacity in the county in the form of a ratio. For example, a county

with a calculated total effect ratio of 1.05 and 100 MW of wind power, can be interpreted

to mean that 100 MW of wind power capacity has increased wages by 5% compared to the

counter-factual of no wind power invested.

The formula for this calculation is shown in equation 9. Here f(βc) represents some

function of the distribution of βc, for example, the median value or another percentile. I

then multiply by 2σ̂w to adjust to the normalization of the log wage data in the model. I

multiply by the standardised capacity, st cap c14 of wind power in the county in MW units.

Finally, I take the exponent in order to interpret the results as ratios. Notice, that the

effectc is then an out-of-sample prediction as the parameters β3
c were estimated based on

the increase in wind power capacity within a county in the period studied not the total

amount of wind power.

Panel B shows these calculated total effects in the form of median point estimates with

14recall that to standardise the variable by demeaning and dividing by 2 times the standard deviation
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Figure 9: Panel A shows the individual county coefficients, β3,w, for the permanent effect
of wind power capacity additions on rural wages in the form of 95% credible intervals.
The counties are ordered from most wind power to least wind power capacity additions.
Panels B, C and D show a out-of-sample, total effect estimate for the 120 counties that
experienced added investment in wind power capacity. The point estimates are median
values of the estimated distributions and the bands represent 95% credible intervals. The
estimates represent, in the form of a ratio, the estimated permanent effect on wages in each
county of the total amount of wind power capacity installed. The estimates are in the form
of a ratios, where 1 is no effect. In Panel B the estimates are plotted against total MW of
installed wind power. In C and D the estimates are plotted against MW per capita. Panel D
is scaled to better see the cluster of points near 0. The total effect of wind power investment
on wages is in most counties modest, though not insignificant: below 5%. Some counties are
estimated to experience substantially larger total effects, above 10%.

95% credibility bands, ordered by the size of the wind power capacity in the county. Panels

C and D show the calculated total effects ordered by wind power capacity per capita, where

panel D zooms-in on the cluster between 0 and .10 MW wind power capacity per capita.

From the figure, it is apparent that most of the magnitudes are modest, with effect sizes
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below 5%. Some effect sizes are estimated to be substantially larger, above 10%, driven by a

large wind farm capacity in the county and a relatively high median β3
c parameter estimate.

effectc = exp(f(βc)2σ̂wst capc) (9)

6 Validation by Simulated Data

In this section, I validate the model by simulating data with known parameters and dis-

tributions, and then estimating the model with the simulated data. I also compare the

results of the Bayesian multilevel model with a commonly used fixed effects model with time

and county fixed effects estimated with maximum likelihood. This is a technical section,

and readers uninterested in the technical estimation of the results can skip to the next,

concluding section.

6.1 Simulation of investment occurrence and magnitude.

The investment decision can be modelled as a sequential random process.15 First, whether

an investment in a certain county in a certain period is made can be modelled as a poisson

process with mean, µ. Thus investment, I, is a random variables where the realised invest-

ment decision can be written ic,t, representing how many investments where made in count c

in period t. Following the definition of a poisson process, the probability mass function can

be written as in equation 10, where λ is the average number of events per county-period.

P (ic,t) ∼ exp(−λ)
λi

i!
(10)

Once a decision to invest is made, then a magnitude is chosen. I choose to model the

magnitudes as a log-normal distribution. The log-normal distribution has a positive range16

15I refer to random here in the sense that the investment decision is exogenous to the observable variables,
and therefor can be seen as a randomly assigned treatment effect.

16While still allowing the the distribution to integrate to one.
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and has a rightward skew, fitting the pattern of the data that shows mostly small- to mid-

sized wind farms but with a handful of very large wind farms. The PMF can be written as

in equation

f(m, s) =
1

sm
√

2π
exp(−1

2
(
log(m)

s
)2) (11)

m =
x− loc
scale

(12)

Here the random variable M, magnitude, is parameterised such that, m = x−shift
exp(µ)

and

s = σ, where µ and σ are from a standard normal distribution X, such that exp(X) = M .

I assign the following parameters to the log-normal distribution: µ = 20, σ = 1, and

shift = 10. The generated distribution is shown in figure 10. The peak of the distribution is

at around 25, but with a long positive tail representing a few wind farms with large capacity.

Figure 10: Distribution of simulated magni-
tude values for wind power plants.

Figure 11: Simulated wind power capacity
over time for each of 100 counties.

Combining the investment decision generation with the magnitude generation, I create

a QxC matrix, I representing Q periods for each of C counties, and where every non-zero

entry represents a wind power investment of size m. Take the cumulative sums across periods

for each county, I create a QxC matrix CI representing the cumulative investment for each

county C in period Q. Figure 11 shows an instance of the simulated cumulative capacity
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data.

6.2 Simulating hierarchical dependence

With the exogenous data simulated, I now create the dependent variable through a hierar-

chical structure. In particular, the QxC matrix W representing the log wage for each county

C in period Q is calculated as in equation 13.

W = α + Q⊗ β0︸ ︷︷ ︸
trend

+ IT ◦ β1︸ ︷︷ ︸
temporary

+ CIT ◦ β3︸ ︷︷ ︸
permanent

(13)

The vectors of coefficients α, β0, β1, and β3, which represent the county intercepts,

time trend, temporary effect of investment and permanent effect of investment are generated

as a composite of an overall average effect, Γit and individual county random effects, αrec,

βi,rec . The Γ coefficients are all distributed as log normal, which give them a positive range.

Referring back to the parameterisation in equation 12, and letting y be realisations random

variable Y , then the Γ distributions are generated as follows:

Γα ∼ lognormal(s = 1, loc = 5, scale = .05) (14)

Γ0 ∼ lognormal(s = 1, loc = .02, scale = .01) (15)

Γ1 ∼ lognormal(s = .5, loc = .001, scale = .0005) (16)

Γ3 ∼ lognormal(s = .5, loc = .001, scale = .0005) (17)

Histograms of 100 draws from each of the distributions is shown in figure 12

The random effect components are all generated as normal random variables with mean 0

and standard deviation .1, .005, .001, .001 for αre and the βi,re distributions where i ∈ 0, 1, 3.

The frequencies of a 100 draws from the α and β coefficients is shown in figure 13
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Figure 12: Simulated draws from Γ coeffi-
cients

Figure 13: distribution of 100 draws from
composite α and β coefficients.

Figure 14: Simulated log wage data for 100
counties over 20 periods.

The resulting simulated log wage data is shown figure 14

6.3 Results from simulated data

Now that the simulated data is generated I use the multilevel model, as detailed above to

estimate parameters from the generated data. I also compare results to a standard fixed

effects model estimated with maximum likelihood with both time and county fixed effects

and where the standard errors are corrected for clustering. This is a common model for

estimating panel data. Here I do a Monte-Carlo style study: regenerating the random effects

components of the data 100 times and then estimating the point estimates and standard

errors of the parameters.
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Figure 15 shows the results of the Monte-Carlo study of the fixed effects model. The

parameter ΓF,1 represents the estimated parameter on the investment variable, thus repre-

senting the immediate temporary effect of investment, while ΓF,3 represents the estimated

parameter on the cumulative capacity, representing the permanent effect of the investment.

The results are scaled to reflect a 100 MW investment.

Comparing the results, which are presented with scale associated with the effect of a

100 MW investment, to figure 12, the point estimates appear to coincide fairly well with

the actual Γ distributions. However, in a hypothesis testing frameworks, in many of the

simulated regressions, the point estimates would not be rejected as significantly different

from zero, as shown by the histograms of the positive and negative cut-off points of a 95%

confidence interval, shown in grey. In some ways, this is not surprising. This reflects the

conservatism of the cluster-adjusted standard errors of the fixed effects model.

We can compare with the results of the multilevel model, shown in figure 16. The results

capture to a close approximation the magnitude and variance of the distribution of the

gamma coefficients.

Figure 15: Results of monte-carlo simula-
tion of a fixed-effects model. Coefficients are
scaled to reflect effects from a 100 MW in-
vestment

Figure 16: Results of multilevel estimation
from simulated data. Coefficients are scaled
to reflect effects from a 100 MW investment

Some discussion and perspective of the simulation results is warranted. The main purpose
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of this section was to validate the results from the multilevel model: To show that the model is

capable of sensibly estimating the distribution of the parameters of interest. The comparison

to the fixed effects model is meant purely as a reference point. A rigorous methodological

comparison of fixed effects models with multilevel models is well beyond the scope of this

article. I can however refer to several excellent discussions of this subject. Gelman and

Hill [2006], McElreath [2015] and Kruschke [2014] recommend using multilevel models when

modelling data with natural groupings and hierarchies and provide extensive explanation

and evidence for this recommendation.

Another important point about this simulation is that the generated data is simplified.

I do not, for example model in observed or unobserved county variables that could be cor-

related with investment, and which my empirical model takes into account. Nor do I model

between-county differences in variance, which is also allowed for in my empirical specifica-

tion. The more restrictive fixed-effects estimation may be expected to perform worse under

these assumptions.

7 Discussion and Speculation

In summary, I find that wind power investments in rural counties have no measurable effect

on employment, but a positive and economically significant permanent effect on wages. A

mid-sized wind farm located in a rural county raises wages by 2.5% on average.

I argue that the model setup provides adequate identification of the causal effect of

wind power investment on employment outcomes. This identification comes partly from the

exogenous nature of wind power investments, which are heavily dependent on average wind

speeds of a location. In addition, a panel data set with a multilevel model setup provides

identification in the presence of unobserved variables correlated with the probability of wind

power investment. The identifying assumption being that these variables are time-invariant.

However, even if there do exist unobserved variables that are correlated with the prob-
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ability of a wind power investment and which are time-varying, there is reason to believe

that identification will still hold. The reason is that the timing between when an investment

decision is made and when a wind plant is built out has high variance and can be seen as an

instrument inserting extra randomness into the treatment variable. Consider a hypotheti-

cal two counties which, due to an unobserved time-varying covariate–say, a change in local

governments–both experience a commitment to build out a wind farm at the same time.

This covariate could also independently affect employment and wages. A wind farm is build

out in one county after a year, while it takes two years to build out the wind farm in the

other county due to extra environmental concerns. So while the time-varying covariate–the

change in local government–confounds the decision to invest, the effect of the actual realised

investment is still identified by the multilevel model.

While I believe that the model is well identified, the underlying mechanism of how wind

power investment affects average wages but not employment in rural counties is not clear.

Several plausible mechanisms are consistent with the results.

One potential mechanism is that the skilled workforce required to install and maintain a

wind turbine is difficult to find in rural counties, and that therefor the workforce commutes

into the county for occasional maintenance work. The effect on wages could then be explained

through increased wealth in the county that accumulates due to lease payments or ownership

stakes from the wind turbines that in turn affects earnings.

An alternative explanation is that the addition of skilled positions maintaining and oper-

ating wind turbines leads to a transfer of already employed, skilled labor from one position in

the county to another, leaving a vacant position in another industry in its wake. If a skilled

workforce is the constraining factor, then rising wages but stagnant overall employment

would be the expected result.

The research question and results in this article are interesting in their own right. Invest-

ments in energy generation and the related effects on labor markets are relevant to current

public policy debates. In fact, they even played a significant role in the narrative of the
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presidential election of 2016.17

However, the degree to which investments in wind power can be considered exogenous

to the local labor market is rare. When making a industrial investment, most firms ex-

plicitly or implicitly take into account the local labor market as a major factor. Skilled

work force, labor costs, and local demand for the product are important factors in the ex-

pected profitability of most industrial investment. Profitability for wind power is however

overwhelmingly determined by the average wind speeds of a given location.

This provides the prospect of wind power investments serving as an exogenous shock

or instrument, and therefor setting up a type of natural experiment for some of the most

important questions in the economics of labor markets. One important topic has been

the trend of labor market “polarisation” in the last four decades, where employment has

increased for low-skilled work and high skilled work, but real wage growth in these two

categories has diverged, with low-skilled work actually experiencing a sustained real wage

decline [Autor, 2014, Autor and Dorn, 2013]. Semi-skilled employment, such as a turbine

technician, has traditionally defined the middle class. This category of employment has

however stagnated in terms of both number of jobs and wages. Whether this stagnation is

due to trade, technology or lack of necessary skills has been a active research topic [Autor

et al., 2015, Acemoglu et al., 2015]. This article only gives hints about this larger debate,

though researchers making use of more detailed register and tax data, of which I do not have

access, could extract more robust insights.

8 Software and Replication Resources

For the analysis, I use the scientific computing environment for python: Numpy, Scipy,

IPython and Jupyter [Walt et al., 2011, Oliphant, 2007, Perez and Granger, 2007]. The

package Pandas was used for cleaning, formatting and descriptive analysis of the data [Wes

17http://www.washingtonpost.com/news/energy-environment/wp/2017/03/29/

trump-promised-to-bring-back-coal-jobs-that-promise-will-not-be-kept-experts-say
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Mckinney, 2010]. Figures were created using the package matplotlib [Hunter, 2007]. The

Bayesian multilevel model was coded and computed using the excellent Stan probabilistic

programming language and engine [Stan Development Team, 2014]. All of these software

packages are open source and freely available. My Stan code and cleaned dataset are available

on my website18. Other code used for preparation of data and descriptive analysis is available

upon request.
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A Full model of wages

A robustness check to the result finding a significant effect of wind power investments in
rural counties is to test the same model with the full data on all counties, including metro
counties and counties adjacent to metro counties. For metro counties – with many industries
and a large employment pool – even a large wind power investment plant should have a
negligible effect on wages. We would not expect to see any significant effect of wind power
investment on wages given that is what the model is capturing. Figure 17 provides a visual
summary of the results. The estimated distributions for Γ3, the parameter representing
permanent increase in wages, is not significantly different from zero in metro counties and
counties adjacent to metros.
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Figure 17: Summary distributions from full model of wages with all counties. Only rural
counties show a statistically significant effect of wind power investment on wages.
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2.5 15 50 85 97.5
param var

Γ0 Metro 2.353 2.368 2.389 2.409 2.427
Small Metro 2.434 2.457 2.483 2.506 2.530
Rural 2.759 2.785 2.813 2.841 2.869

Γ1 Metro -0.013 -0.005 -0.000 0.004 0.010
Small Metro -0.014 -0.005 -0.000 0.004 0.013
Rural -0.007 -0.002 0.001 0.006 0.015

Γ2 Metro -0.009 -0.003 0.000 0.006 0.013
Small Metro -0.016 -0.007 -0.000 0.004 0.011
Rural -0.006 -0.003 0.000 0.007 0.015

Γ3 Metro -0.014 0.000 0.019 0.043 0.061
Small Metro -0.014 0.002 0.022 0.046 0.070
Rural -0.001 0.015 0.040 0.065 0.092

Γa Metro -0.192 -0.176 -0.157 -0.134 -0.099
Adj. Metro -0.203 -0.183 -0.164 -0.140 -0.104
Rural -0.195 -0.178 -0.156 -0.131 -0.042

Φ1 Metro 0.605 0.620 0.646 0.670 0.690
Adj. Metro 0.313 0.354 0.404 0.454 0.486
Rural 0.358 0.384 0.410 0.436 0.460

Φ2 Metro 0.071 0.098 0.122 0.141 0.160
Adj. Metro -0.015 0.012 0.038 0.066 0.095
Rural -0.132 -0.119 -0.102 -0.079 -0.053

Table 4: Table from full model of wages with all counties. Wind power investments do not
have statistically significant effects in metro areas and adjacent metros.
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B Map of wind resources

Figure 18: The National Renewable Energy Laboratory’s wind resources map. Wind power
investments, as shown in figure 1 are concentrated in the wind-rich spine of the US running
from Texas up through North Dakota. Wind power investment decisions can to a certain
extent be seen as exogenous
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